

Power counting to jet quenching

Varun Vaidya, University of South Dakota

based on 2408.XXXX Felix Ringer, Yacine Mehtar-Tani, Balbeer Singh

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 1510767 1405388

Jets lose energy and are "Quenched"

 We can use the jet to access the microscopic structure of the strongly coupled QGP.

Varun Vaidya, Univ of South Dakota

2

Key questions for jet evolution in QGP

 Separate the perturbative physics from the non-perturbative by scale

 Parameterize the non-perturbative physics in terms of Gauge invariant operators \rightarrow e.g the PDF in DIS, Drell Yan, Higgs production etc.

• **Prove** (disprove) universality of nonperturbative physics across jet observables \rightarrow Universality gives predictive power!

We rely on EFT approach to factorization \rightarrow Explicitly separate physics at

Goal of this talk

• Can we factorize jet evolution in Quark Gluon plasma by scale?

Chapter 1

Anatomy of a vacuum jet

Tree level p_T $p^2 \sim p_T^2$ **Hard Scale** $p^2 \sim \Lambda^2_{QCD}$ f(x,Q²)

The parton shower

• Parton splittings preferentially happen at small angles \rightarrow " collinear"

Selecting events with a jet of radius R sets the angular scale for collinear splittings.

 $E \sim p_T, \ \theta \sim R$ Hard collinear $p^2 \sim (p_T R)^2$ Jet Scale $p^2 \sim p_T^2$ Hard Scale $n^2 \sim \Lambda_c^2$

A separation of scales $\frac{d\sigma^{pp\to jet X}}{dp_T d\eta} = \frac{2p_T}{s} \sum_{a,b,c} \int_{x_a^{\min}}^1 \frac{dx_a}{x_a} f_a(x_a,\mu) \int_{x_b^{\min}}^1 \frac{dx_b}{x_b} f_b(x_b,\mu) \quad \text{Physics at scale } \Lambda_{QCD}$ $\times \left[\frac{dz}{z} H(z, x_a, x_b, \mu) \right] \frac{J_c(z, p_T, R, \mu)}{J_c(z, p_T, R, \mu)} + O(R^2) + O\left(\frac{\Lambda_{QCD}^2}{(p_T R)^2} \right)$ Hard function Jet function at $p_T R$ at p_T The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production Zhong-bo Kang, Felix Ringer and Ivan Vitev JHEP 10 (2016) 125

Chapter 2

Introducing the QGP medium

New medium scales

 QGP temperature T $\sim 300-800$ MeV • $m_D \sim T$

The basic hierarchy

Parton in the medium

Coulomb like instantaneous "**Glauber**" gluon exchange $\sim \frac{1}{k_{\perp}^2}$

- Elastic forward scattering
- Medium induced radiation
- ° Typical $k_{\perp} \sim m_D$,
- Angle of deflection $\theta \sim \frac{k_{\perp}}{\omega} \ll 1$
- ^o An EFT with θ as the expansion parameter \rightarrow

Multiple interactions

- $Q_{\text{med}} \rightarrow \text{Total}$ average transverse kick per parton $\geq m_D$
- For a dense medium, perturbative?

Critical angle

- ° Critical angle of the medium $\theta_c \sim \frac{1}{Q_{\rm med}L}$
- $^{\rm o}$ Energetic partons separated by $\theta \gg \theta_c$ act as independent sources of medium induced radiation

The updated hierarchy

perturbative/non-perturbative ~ 1- few GeV

non-perturbative ~ 100s of MeV

Chapter 3

Jet propagation in the medium

The physical picture

$$\sim (p_T R)^2$$
 Jet Scale Hard collinear $E \sim p_T$, $\theta \sim R^2$
 $P_T \sim p_T^2$ Hard Scale

 $^{\rm o}$ The hard process and parton shower for scales $~\sim p_T R$ remain unaffected by the medium

The physical picture

 $p^{2} \sim Q_{\text{med}}^{2}$ Medium Scale collinear soft $\theta \sim R, E \sim Q_{\text{med}}/R$ $p^{2} \sim (p_{T}R)^{2}$ Jet Scale Hard collinear $E \sim p_{T}, \ \theta \sim R$ $p^{2} \sim p_{T}^{2}$ Hard Scale

 $^{\rm o}$ Each hard collinear parton separated by θ_c acts as a source for collinear soft radiation at virtuality $~\sim Q_{\rm med}^2$

 $\frac{d\sigma^{AA \to \text{jet}X}}{dp_T d\eta} = \frac{2p_T}{s} \sum_{a,b,c} \int_{x_a^{\min}}^1 \frac{dx_a}{x_a} f_a(x_a,\mu) \int_{x_b^{\min}}^1 \frac{dx_b}{x_b} f_b(x_b,\mu)$

 $\times \left| \frac{dz}{Z} H(z, x_a, x_b, \mu) \right|$

 $\times \int_{\omega_J}^{\frac{1}{z}} d\omega'_J \int d\epsilon \delta(\omega'_J - \omega_J - \epsilon) \sum_{m=1}^{\infty} \mathcal{J}_{i \to m}(\omega'_J, \mu, \theta_c) \otimes_{\theta} S_m(\epsilon, \mu) + O(R^2) + O\left(\frac{Q_{\text{med}}}{p_T R}\right)^2$ Medium induced Create m prongs \rightarrow Wilson coeff at $p_T R$

The EFT picture

 ω'_J

energy loss function

 ω_I

The medium energy loss function

$$\mathcal{S}_m(\{\underline{n}\},\epsilon) \equiv \operatorname{Tr}\Big[U_m(n_m)...U_1(n_1)U_0(\bar{n})\rho_M U_0^{\dagger}(\bar{n})\Big]$$

Correlator of m Wilson lines

$$U(n) \equiv \mathcal{P} \exp \left[ig \int_{0}^{+\infty} \mathrm{d}s \, n \cdot A_{\mathrm{cs}}(s) \right]$$

 $(\bar{n})U_1^{\dagger}(n_1)...U_m^{\dagger}(n_m)\mathcal{M}$

Separating the medium from the jet

Chapter 4

Looking inside a single prong S_1 $\mathcal{S}_1 = \operatorname{Tr} \left| U(n) U(\bar{n}) \mathscr{M} U^{\dagger}(\bar{n}) U^{\dagger}(n) \right|$

An effective field theory for forward scattering and factorization violation I. Rothstein, I. Stewart, JHEP 1608 (2016) 025

Varun Vaidya, Univ of South Dakota

 $E \sim Q_{med}/R$, $p^2 \sim Q_{med}^2 \rightarrow Collinear Soft$

Medium partons and dynamics $E \leq Q_{\text{med}}, p^2 \sim Q_{\text{med}}^2 \rightarrow \text{Soft}$

A separation in rapidity

Defines an effective action for CS, S d.o.f at leading power in the scattering angle θ

Looking inside a single prong S_1 $\mathcal{S}_1 = \operatorname{Tr} \left| U(n) U(\bar{n}) \mathcal{M} U^{\dagger}(\bar{n}) U^{\dagger}(n) \right|$ **Collinear Soft**

Varun Vaidya, Univ of South Dakota

$$\mathbf{\hat{H}}dt = \int dt \Big[H_{cs} + H_s + H_G^{cs-s} \Big] + \int ds \mathcal{O}_{c-s}(sn)$$

$$Medium induced$$
CS radiation along world

Forward Scattering of CS off Soft

line of hard prong

Single prong physics $S_1(n,\epsilon,\mu) = \sum \bar{\mathcal{S}}_i(n,\epsilon,\mu)$ i=0+

All order Vacuum cs radiation

All order CS + Soft radiation with Single medium interaction

+

m medium interactions

Single interaction

Single medium interaction

 $\mathcal{S}_1(n,\epsilon,k_{\perp},\nu) \to \text{Soft limit of GLV at LO, obeys BFKL evolution in }\nu$

Varun Vaidya, Univ of South Dakota

$$\mathcal{B}(k_{\perp},\mu,\nu) \equiv \int d^2 r_{\perp} e^{i\vec{k}_{\perp}\cdot\vec{r}_{\perp}} \langle O_s^A(r_{\perp})\rho_M \ O_s^A(0) \rangle$$

$$O_S^{q\alpha} = \overline{\Psi}_s S_n T^{\alpha} \frac{n}{2} S_n^+ \Psi_s^n$$

A gauge invariant operator definition \rightarrow Wightman correlator at LO

$$\frac{d}{d\ln\nu}\mathscr{B}(k_{\perp},\mu,\nu) = \int d^2q_{\perp}K_{BFKL}(k_{\perp},u_{\perp})\mathscr{B}(u_{\perp},\mu,\nu)$$

$$\frac{d}{d\ln\mu}\mathscr{B}(k_{\perp},\mu,\nu) = -\frac{\alpha_{s}\beta_{0}}{\pi}\mathscr{B}(k_{\perp},\mu,\nu)$$

Varun Vaidya, Univ of South Dakota

An EFT within SCET

Interaction between d.o.f s is dominated by forward(small angle) scattering mediated by the Glauber mode.

$$L_{QCD} = L_{collinear} + L_{soft} + L_{Glauber} + O(x^2)$$
$$\equiv L_{SCET} + L_G$$

$$L_G \sim O_{cs}^{qq} = O_n^{q\alpha} \frac{1}{P_\perp^2} O_S^{q\alpha}$$

An effective field theory for forward scattering and factorization violation I. Rothstein, I. Stewart, JHEP 1608 (2016) 025

$$O_{S}^{q\alpha} = \overline{\Psi}_{s} S_{n} T^{\alpha} \frac{n}{2} S_{n}^{+} \Psi_{s}^{n}$$
$$O_{n}^{q\alpha} = \overline{\chi}_{n} W_{n} T^{\alpha} \frac{\overline{n}}{2} W_{n}^{+} \chi_{n}$$

Gauge invariant building blocks

$$J_{i}(z,\omega_{J},\mu) = \int_{\omega_{J}}^{\frac{\omega_{J}}{z}} d\omega'_{J} \int d\epsilon \delta(\omega'_{J} - \omega_{J} - \omega_{J}) d\epsilon \delta(\omega'_{J} - \omega_{J}) d\epsilon \delta(\omega'_{$$

For a quark jet

$$\gamma_{\mathcal{J}_{q\to 1}}^{qq} = \delta(1-z) \frac{\alpha_s C_F}{2\pi} \left(4\ln\frac{\mu^2}{\omega_J^2 R^2} + 3 \right) - \frac{\alpha_s C_F}{\pi} (1+z)$$

$$\gamma_{\mathcal{J}_{q\to 1}}^{qq} + \gamma_{S_1}^q = P_{qq} \qquad \longrightarrow \qquad \mathbf{C}$$

Varun Vaidya, Univ of South Dakota

A single hard prong

$$p^2 \sim (p_T R)^2$$
 $p^2 \leq Q^2_{\text{med}}$

 $-\epsilon)\mathcal{J}_{i\to 1}(n,\omega'_{J},\mu)\otimes_{\theta_{n}}S_{1}(n,\epsilon)=(1-z)\omega'_{J},\mu)+.$

$$\gamma_{S_1}^q = -\delta(1-z) \frac{4\alpha_s C_F}{2\pi} \ln \frac{\mu^2}{\omega_J^2 R^2} + \frac{\alpha_s C_F}{2\pi} \frac{4}{(1-z)_+}$$

onsistency of factorization

RG running leads to a resummation of threshold $\ln(1 - z)$

The mean free path

L

Varı

- ^o Mean free path of a jet → average distance between successive interactions → emergent scale.
- Dilute medium $\lambda_{mfp} \gg L$
- ° Dense medium $\lambda_{mfp} \leq L$
- Asymption : λ_{mfp} ≫ $\frac{1}{m_D}$ → Successive interactions with color uncorrelated medium partons

Putting it all together

Hard collinear $E \sim p_T$, $\theta \sim R$ Collinear soft $E \sim Q_{med}/R$, $\theta \sim R$

$$\rightarrow \log \frac{1}{\theta}$$

Coherence time

- Quantum coherence time of radiated parton $t_c \sim \frac{\omega}{q_{\perp}^2}$
- ^o No quantum interference for $t \gg t_c$
- ° $t_c \gg L$, strong quantum interference → LPM suppression

