Neutron star spin wandering:

Consequences and implications

ANDRÉS F. VARGAS SÁNCHEZ ON BEHALF OF THE UNIVERSITY OF MELBOURNE

INT Workshop, November 2024

ARC Centre of Excellence for Gravitational Wave Discove

Overview:

The pulse phase series is decomposed as:

$$
\phi(t) = \phi_0 + \nu(t - t_0) + \frac{1}{2}\dot{\nu}(t - t_0)^2
$$

+ (other terms) + $\delta\phi(t)$

Spin wandering:

Time-correlated stochastic structures in the pulse arrival times not associated to measurement error. Could arise due to internal (e.g. crust-superfluid coupling) or external (e.g. accretion) mechanisms.

Phase residuals (units: cycles) of an accreting millisecond X-ray pulsar. From: [Bult. P](https://ui.adsabs.harvard.edu/link_gateway/2022ApJ...935L..32B/doi:10.3847/2041-8213/ac87f9) et al. (2022).

timing residuals (below; units: ms) of an isolated pulsar. From: [Lower. M. E.](https://doi.org/10.1093/mnras/staa615) et al. (2020).

CW_s

```
CW detection with hidden
Markov model (HMM; see
 \text{later)} + \text{EM ephemeris}↓
Crust-quadrupole lag
        ↓
Superfluidity
```
Glitches

Disentangling spin wandering and glitches systematically with hidden Markov model ↓ Better glitch statistics ↓ Nuclear pinning

Secular braking

Disentangling spin wandering and secular braking ↓ Torque physics (EM, GW, magnetic field decay, etc.)

The pipeline involves:

- (a) Hidden parameters \rightarrow GW frequency $f(t)$
- (b) Observable states \rightarrow Detector data
- (c) Statistic $\rightarrow L[f(t)]$ Detector data]

- \blacktriangleright $f(t)$ is allowed to jump by -1, 0, +1 frequency bins at every step of T_{drift} .
- \blacktriangleright The Viterbi algorithm tracks $f(t)$.

HMM tracking. Image made by J. Carlin. and H. Middleton.

Key contributor for LIGO:

- ▶ six searches using 03 data
- \blacktriangleright at least three planned searches using O4 data.

In the absence of a detection, the main results are upper limits on the GW strain h_0 .

PHYSICAL REVIEW D 105, 022002 (2022)

Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

R. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

 $h_0 > 4.7 \times 10^{-26}$

PHYSICAL REVIEW D 106, 062002 (2022)

Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

R. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

 $h_0 > 6.2 \times 10^{-26}$ ($\iota = 44^\circ$)

Some searches using the HMM pipeline.

Disentangling spin wandering from glitches

- \blacktriangleright Glitches: impulsive, erratically occurring, spin-up events.
- ▶ Glitches probe bulk matter at nuclear densities.
- \triangleright Studying them is complicated by spin wandering before and after the glitch.
- ▶ A HMM can be used to disentangle spin wandering from glitches.

Glitch statistics

Stress time series for two meta models: state dependent Poisson (left), and Brownian (right). Note: The linear ramp (left) approaches the threshold, while the Brownian ramp (right) reaches it.

- ▶ Size and waiting time PDF, cross-correlation, and autocorrelation can distinguish between meta models.
- **►** The Brownian meta-model is ruled out by six pulsars with > 10 glitches. See: [Carlin.](https://doi.org/10.1093/mnras/stz2014) [J. B., and Melatos. A. \(2019\),](https://doi.org/10.1093/mnras/stz2014) [\(2020\),](https://doi.org/10.1093/mnras/staa935) and [\(2021\).](https://dx.doi.org/10.3847/1538-4357/ac06a2)

Disentangling pulsar's secular spin down from spin wandering

 \triangleright NS are believed to spin down following

$$
\dot{\nu}=K\nu^{n_{\rm pl}}.
$$

- ▶ Is it $n_{\text{pl}} \approx 3$? or maybe $n_{\text{pl}} \approx 5$? Does K evolve, e.g. magnetic field decay?
- ▶ Yet, timing experiments yield $3 \ll |n| \lesssim 10^6$ for some pulsars. We call these anomalous braking indices.

Distribution of $n = \nu \dot{\nu} / \dot{\nu}^2$, taken from [the ATNF pulsar](https://www.atnf.csiro.au/research/pulsar/psrcat/) [catalogue.](https://www.atnf.csiro.au/research/pulsar/psrcat/)

Could spin wandering be behind this? — Yes!

- ▶ Idealized phenomenological model: The NS rotational parameters execute a mean-reverting, random walk driven by $\xi(t)$.
- \blacktriangleright $\xi(t)$ is a fluctuating, zero-mean, Langeving driver satisfying

$$
\langle \xi(t)\xi(t')\rangle = \sigma_{\ddot{\nu}}^2 \delta(t-t'). \quad (1)
$$

n, $\frac{57200}{\text{TOA (MJD)}}$ $\frac{58000}{\text{TOA (MJD)}}$ $\frac{5800}{\text{TOA (H)}}$ $\frac{57200}{\text{TOA (H)}}$ $\frac{57600}{\text{TOA (H)}}$ $\frac{57200}{\text{TOA (H)}}$ $\frac{57600}{\text{TOA (H)}}$ $\frac{58000}{\text{TOA (H)}}$ $\frac{57200}{\text{TOA (H)}}$ $\frac{57200}{\text{TOA (H)}}$ $\frac{55000}{\text{TOA$ Actual (left) and synthetic (right) phase residuals.

A predictive, falsifiable formula for the variance of the measured n, viz.

$$
\langle n^2 \rangle = n_{\rm pl}^2 + \frac{\sigma_{\nu}^2 \nu^2}{\gamma_{\nu}^2 \nu^4 \, T_{\rm obs}},\qquad (2)
$$

- $\blacktriangleright \sigma_{\ddot{\nu}}/\gamma_{\ddot{\nu}}$ depends on nuclear properties, e.g. crust-superfluid coupling time-scale.
- ▶ Can modify for $K \neq$ constant! [Vargas.](https://doi.org/10.1093/mnras/stad1301) [A. F. and Melatos A. \(2024\)](https://doi.org/10.1093/mnras/stad1301).

Variance of *n* versus $\sigma_{\ddot{\nu}}^2$. From: [Vargas. A. F. and](https://doi.org/10.1093/mnras/stae2326) [Melatos A. \(2023\)](https://doi.org/10.1093/mnras/stae2326)

Summary

Takeaway points

- \triangleright A pulsar's spin frequency wanders stochastically with time due to internal or external mechanisms.
- ▶ Spin wandering complicates CW searches, glitch detections, and measuring NS spin down.
- \triangleright Yet, accommodating for it, has important implications for superfluidity, nuclear pinning, and NS's braking mechanisms, among others.
- \triangleright Extensions to the ideas and methods here presented can be applied to produce:
	- \triangleright new GW detection algorithm for pulsar timing arrays. See [Kimpson. T.](https://doi.org/10.1093/mnras/stae2197) et al. (2024a) and [\(2024b\)](https://doi.org/10.1093/mnras/stae2360).
	- A Bayesian scheme to infer $n_{\rm pl}$ and $\sigma_{\ddot{\nu}}/\gamma_{\ddot{\nu}}$ for pulsar populations.

Backup slides

The University of Melbourne CW/NS group

 \blacktriangleright The group consists of > 20 members all supervised by Dr. Andrew Melatos (who sends his regards).

The venerable.

▶ The group works on a broad range of topics. For CWs and spin wandering, it contributions are divided between theory and data analysis.

The University of Melbourne CW program

Theory:

- \triangleright **CW emission:** Mountains (R. Brunet.) Former: A. Kerin, and P. Rossetto) , oscillations modes due accretion (E. Dong) , and pinned superfluid vortices (J. Thong, and T. Cheunchitra. Former: J. Carlin, and G. Howitt) .
- \triangleright Glitch statistics (Former: J. Carlin).
- ▶ Pulsars: Spin wandering and measurements (A. F. Vargas, J. O'Leary, L. Dunn, N. O'neill, T. Kimpson) .

Data analysis:

- ▶ GW search pipelines (S. Suvorova, B. Moran, R. evans, and L. Dunn. Former: P. Clearwater, and L. Sun) .
- ▶ GW searches (A. F. Vargas, C. Lee, J. Thong, L.Dunn, N. Low, T. Bu, and T. Cheuchitra)
- ▶ A Pulsar Timing Array pipeline (Lead: T. Kimpson, contributions from the rest of the group) .
- ▶ An HMM-based glitch and pulsar finder (J. O'leary, and L.Dunn).
- \blacktriangleright Noise characterization (J. O'leary, and T. Kimpson) .

A Bayesian scheme to infer braking indices for pulsar populations

- ▶ In order to estimate the population-level distribution of n_{pl} , we combined the equation for $\langle n^2 \rangle$ with a hierarchical Bayesian scheme.
- \blacktriangleright For a test with 100 synthetic pulsars, 87% of the per-pulsar posteriors include $n_{\rm pl}$! — Similar accuracy is obtained for different population sizes.
- \blacktriangleright The idea is to apply the Bayesian scheme to real astronomical data The idea is to apply the Bayesian

scheme to real astronomical data

(coming soon).
 $\begin{array}{ccc}\n & 3.4 & 3.6 & 3.8 & 4.0 & 4.2 & 4.4 & 4.6 \\
\hline\n\mu_{pl} & \mu_{pl} & \mu_{pl}\n\end{array}$
 $\begin{array}{ccc}\n & 3.4 & 3.6 & 3.8 & 4.0 & 4.2 & 4.4 & 4.6 \\
\mu_{pl} & \mu_{pl}\n\end{array$

Validation test for a population of 100 synthetic pulsars with n_{pl} drawn from a Gaussian with mean $\mu_{\text{pl}} = 4$ and standard deviation $\sigma_{\text{pl}} = 4$. From: Vargas. A. F. and Melatos A. (submitted)