Neutron star spin wandering:

Consequences and implications

ANDRÉS F. VARGAS SÁNCHEZ On behalf of the University of Melbourne

INT Workshop, November 2024

DEGTAL

ARC Centre of Excellence for Gravitational Wave Discover

Overview:

The pulse phase series is decomposed as:

$$egin{aligned} \phi(t) =& \phi_0 +
u(t-t_0) + rac{1}{2} \dot{
u}(t-t_0)^2 \ &+ (ext{other terms}) + \delta \phi(t) \end{aligned}$$

Spin wandering:

Time-correlated stochastic structures in the pulse arrival times not associated to measurement error. Could arise due to internal (e.g. crust-superfluid coupling) or external (e.g. accretion) mechanisms.

Phase residuals (units: cycles) of an accreting millisecond X-ray pulsar. From: Bult. P *et al.* (2022).

timing residuals (below; units: ms) of an isolated pulsar. From: Lower. M. E. *et al.* (2020).

CWs

```
CW detection with hidden
Markov model (HMM; see
later) + EM ephemeris
Crust-quadrupole lag
Superfluidity
```

Glitches

Disentangling spin wandering and glitches systematically with hidden Markov model Better glitch statistics Nuclear pinning

Secular braking

Disentangling spin wandering and secular braking Torque physics (EM, GW, magnetic field decay, etc.)

The HMM pipeline

The pipeline involves:

- (a) Hidden parameters \rightarrow GW frequency f(t)
- (b) Observable states \rightarrow Detector data
- (c) Statistic $\rightarrow L[f(t)]$ Detector data]

- ► f(t) is allowed to jump by -1, 0, +1 frequency bins at every step of T_{drift}.
- The Viterbi algorithm tracks f(t).

HMM tracking. Image made by J. Carlin. and H. Middleton.

Key contributor for LIGO:

- six searches using O3 data
- at least three planned searches using O4 data.

In the absence of a detection, the main results are upper limits on the GW strain h_0 .

PHYSICAL REVIEW D 105, 022002 (2022)

Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

R. Abbott et al.^{*} (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

 $h_0 \ge 4.7 \times 10^{-26}$

PHYSICAL REVIEW D 106, 062002 (2022)

Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

R. Abbott *et al.* * (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

 $h_0 \geq 6.2 imes 10^{-26}$ ($\iota = 44^\circ$)

Some searches using the HMM pipeline.

Disentangling spin wandering from glitches

- Glitches: impulsive, erratically occurring, spin-up events.
- Glitches probe bulk matter at nuclear densities.
- Studying them is complicated by spin wandering before and after the glitch.
- A HMM can be used to disentangle spin wandering from glitches.

Glitch (above) and HMM tracking (below). From: Dunn. L. et al. (2023)

Glitch statistics

Stress time series for two meta models: state dependent Poisson (left), and Brownian (right). Note: The linear ramp (left) approaches the threshold, while the Brownian ramp (right) reaches it.

- Size and waiting time PDF, cross-correlation, and autocorrelation can distinguish between meta models.
- ► The Brownian meta-model is ruled out by six pulsars with ≥ 10 glitches. See: Carlin. J. B., and Melatos. A. (2019), (2020), and (2021).

Disentangling pulsar's secular spin down from spin wandering

► NS are believed to spin down following

$$\dot{\nu} = K \nu^{n_{\rm pl}}.$$

- ► Is it n_{pl} ≈ 3? or maybe n_{pl} ≈ 5? Does K evolve, e.g. magnetic field decay?
- Yet, timing experiments yield 3 ≪ |n| ≤ 10⁶ for some pulsars. We call these anomalous braking indices.

Distribution of $n = \nu \dot{\nu} / \dot{\nu}^2$, taken from the ATNF pulsar catalogue.

Could spin wandering be behind this? - Yes!

- Idealized phenomenological model: The NS rotational parameters execute a mean-reverting, random walk driven by ξ(t).
- ξ(t) is a fluctuating, zero-mean, Langeving driver satisfying

$$\langle \xi(t)\xi(t')\rangle = \sigma_{\ddot{\nu}}^2\delta(t-t').$$
 (1)

Actual (left) and synthetic (right) phase residuals. From: Vargas. A. F. and Melatos A. (2023)

A predictive, falsifiable formula for the variance of the measured n, viz.

$$\langle n^2
angle = n_{\rm pl}^2 + \frac{\sigma_{\ddot{\nu}}^2 \nu^2}{\gamma_{\ddot{\nu}}^2 \dot{\nu}^4 T_{\rm obs}},$$
 (2)

- $\sigma_{\ddot{\nu}}/\gamma_{\ddot{\nu}}$ depends on nuclear properties, e.g. crust-superfluid coupling time-scale.
- ► Can modify for K ≠ constant! Vargas. A. F. and Melatos A. (2024).

Variance of n versus $\sigma^2_{\ddot{\nu}}.$ From: Vargas. A. F. and Melatos A. (2023)

Summary

Takeaway points

- A pulsar's spin frequency wanders stochastically with time due to internal or external mechanisms.
- Spin wandering complicates CW searches, glitch detections, and measuring NS spin down.
- Yet, accommodating for it, has important implications for superfluidity, nuclear pinning, and NS's braking mechanisms, among others.
- Extensions to the ideas and methods here presented can be applied to produce:
 - new GW detection algorithm for pulsar timing arrays. See Kimpson. T. et al. (2024a) and (2024b).
 - A Bayesian scheme to infer $n_{\rm pl}$ and $\sigma_{\ddot{\nu}}/\gamma_{\ddot{\nu}}$ for pulsar populations.

Backup slides

The University of Melbourne CW/NS group

► The group consists of ≥ 20 members all supervised by Dr. Andrew Melatos (who sends his regards).

The venerable.

The group works on a broad range of topics. For CWs and spin wandering, it contributions are divided between theory and data analysis.

The University of Melbourne CW program

Theory:

- CW emission: Mountains (R. Brunet. Former: A. Kerin, and P. Rossetto), oscillations modes due accretion (E. Dong), and pinned superfluid vortices (J. Thong, and T. Cheunchitra. Former: J. Carlin, and G. Howitt).
- ► Glitch statistics (Former: J. Carlin) .
- Pulsars: Spin wandering and measurements (A. F. Vargas, J. O'Leary, L. Dunn, N. O'neill, T. Kimpson) .

Data analysis:

- GW search pipelines (S. Suvorova, B. Moran, R. evans, and L. Dunn. Former: P. Clearwater, and L. Sun).
- GW searches (A. F. Vargas, C. Lee, J. Thong, L.Dunn, N. Low, T. Bu, and T. Cheuchitra)
- A Pulsar Timing Array pipeline (Lead: T. Kimpson, contributions from the rest of the group).
- An HMM-based glitch and pulsar finder (J. O'leary, and L.Dunn).
- Noise characterization (J. O'leary, and T. Kimpson).

A Bayesian scheme to infer braking indices for pulsar populations

- ▶ In order to estimate the population-level distribution of $n_{\rm pl}$, we combined the equation for $\langle n^2 \rangle$ with a hierarchical Bayesian scheme.
- For a test with 100 synthetic pulsars, 87% of the per-pulsar posteriors include n_{pl}! — Similar accuracy is obtained for different population sizes.
- The idea is to apply the Bayesian scheme to real astronomical data (coming soon).

Validation test for a population of 100 synthetic pulsars with $n_{\rm pl}$ drawn from a Gaussian with mean $\mu_{\rm pl}=4$ and standard deviation $\sigma_{\rm pl}=4.$ From: Vargas. A. F. and Melatos A. (submitted)