Quantifying the likelihood of quark-matter cores in massive neutron stars

Aleksi Vuorinen

University of Helsinki & Helsinki Institute of Physics

erc

EoS measurements with next-generation GW detectors

Institute for Nuclear Theory, 2 Sept 2024

pQCD at high density:

Gorda, Kurkela, Paatelainen, Säppi, AV, PRL 127, 2103.05658
 Gorda, Paatelainen, Seppänen, Säppi, PRL 131, 2307.08734

Applications to neutron-star physics:

- 1) Annala et al. (incl. AV), Nature Phys. (2020), 1903.09121
- 2) Annala et al. (incl. AV), PRX 12 (2022), 2105.05132
- 3) Annala et al. (incl. AV), Nature Comm. (2023), 2303.11356

Lecture notes: AV, Acta Phys. Polon. B 55 (2024), 2405.01141

Parallels and differences between heavy-ion collisions and NS cores:

- Both feature strongly interacting matter at high energy densities up to and exceeding 1 GeV/fm³
 - O At these energy densities, QCD strongly coupled → need to account for non-perturbative effects in some fashion
- At high T, lattice simulations have found a *crossover* deconfinement transition at $T \sim 155$ MeV, $\epsilon \sim 400$ MeV/fm³, while at high n_B order and location of transition unknown (lattice results not available)

• Need alternative (experimental?) access to non-perturbative physics

- In heavy-ion physics, creation of deconfined matter confirmed indirectly through presence of a near-thermal medium with $T > T_c$
 - \circ $\,$ Can this be repeated in NS context, perhaps through EoS inference?

NS matter: from dilute crust to ultradense core

- μ_B increases gradually, starting from $\mu_{\rm Fe}$
- Baryon/mass density increase beyond saturation density $\approx 0.16/\text{fm}^3$
- Composition changes from ions to nuclei to neutron liquid and beyond
- Good approximations: $T \approx 0 \approx n_Q$
- Low-density EoS constrained by experiment; after neutron drip point interactions matter \widehat{F}
- Systematic effective theory framework: Chiral Effective Theory (CET)
- State-of-the-art CET EoSs NNNLO in χPT power counting but still long way from stellar centers [e.g. Tews et al., PRL 110 (2013)]

- μ_B increases gradually, starting from $\mu_{\rm Fe}$
- Baryon/mass density increase beyond saturation density $\approx 0.16/\text{fm}^3$
- Composition changes from ions to nuclei to neutron liquid and beyond
- Good approximations: $T \approx 0 \approx n_Q$
- At high density, asymptotic freedom \Rightarrow weakening coupling and deconfinement
- State-of-the-art pQCD EoS at partial NNNLO, with purely soft and mixed sectors fully determined [Gorda et al., PRL 127 (2021); PRL 131 (2023)]
- Missing hard contribution shown to bring dramatic improvements in accuracy

- μ_B increases gradually, starting from $\mu_{\rm Fe}$
- Baryon/mass density increase beyond saturation density $\approx 0.16/\text{fm}^3$
- Composition changes from ions to nuclei to neutron liquid and beyond
- Good approximations: $T \approx 0 \approx n_Q$

∴ Low- and high-density limits under control but extensive no-man's land at intermed. densities. Possibilities for proceeding:

- 1) Solve the sign problem of lattice QCD
- 2) Use phenomenological models for nuclear and quark matter
- 3) Allow all possible behaviors for the EoS

- μ_B increases gradually, starting from $\mu_{\rm Fe}$
- Baryon/mass density increase beyond saturation density $\approx 0.16/\text{fm}^3$
- Composition changes from ions to nuclei to neutron liquid and beyond
- Good approximations: $T \approx 0 \approx n_Q$

 ∴ Low- and high-density limits under control but extensive no-man's land at intermed. densities. Possibilities for proceeding:

- 1) Solve the sign problem of lattice QCD
- 2) Use phenomenological models for nuclear and quark matter
- 3) Allow all possible behaviors for the EoS

NS-matter EoS: model-independent interpolation

Useful strategy: First interpolate speed of sound between CET and pQCD limits, then integrate to obtain the pressure and other thermodynamic quantities [Annala et al., Nature Physics (2020) and PRX (2022)]

Useful strategy: First interpolate speed of sound between CET and pQCD limits, then integrate to obtain the pressure and other thermodynamic quantities [Annala et al., Nature Physics (2020) and PRX (2022)]

Allows accurate tracking of c_s^2 – an interesting quantity with tension between expectations from nuclear theory and experience from other contexts

On top of the usual low- and highdensity limits, always require:

- EoS must support $2M_{\odot}$ stars
- LIGO/Virgo 90% tidal deformability limit must be satisfied
 [Annala et al., Nature Physics (2020)]

In addition, can also take into account:

- NICER data for PSR J0740+6620: $\circ R(2M_{\odot}) > 11.0$ km (95%) $\circ R(2M_{\odot}) > 12.2$ km (68%)
- BH formation in GW170817 via
 Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]

Energy density $[MeV/fm^3]$

On top of the usual low- and highdensity limits, always require:

- EoS must support $2M_{\odot}$ stars
- LIGO/Virgo 90% tidal deformability limit must be satisfied
 [Annala et al., Nature Physics (2020)]

In addition, can also take into account:

- NICER data for PSR J0740+6620: $\circ R(2M_{\odot}) > 11.0 \text{km} (95\%)$ $\circ R(2M_{\odot}) > 12.2 \text{km} (68\%)$
- BH formation in GW170817 via
 Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]

On top of the usual low- and highdensity limits, always require:

- EoS must support $2M_{\odot}$ stars
- LIGO/Virgo 90% tidal deformability limit must be satisfied
 [Annala et al., Nature Physics (2020)]

In addition, can also take into account:

- NICER data for PSR J0740+6620: $\circ R(2M_{\odot}) > 11.0$ km (95%) $\circ R(2M_{\odot}) > 12.2$ km (68%)
- BH formation in GW170817 via
 Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]

The EoS band features clear two-phase structure, with polytropic index $\gamma \equiv \frac{d \ln p}{d \ln \epsilon}$ transitioning from hadronic ($\gamma \gtrsim 2$) to near-conformal ($\gamma \approx 1$) behavior below TOV densities: evidence for QM cores

[Annala et al., Nature Physics (2020)]

However, open questions remain:

- 1) Do other quantities display similar signs of conformalization?
- 2) Does conformalization necessarily imply onset of deconfinement?
- 3) How likely are QM cores in TOV stars?
- 4) What is the role of the pQCD limit?

NS-matter EoS: recent Bayesian results

Improvements in recent work:

- Factor in measurement uncertainties ⇒ ability to utilize many more observations in the analysis
- Track also conformal anomaly and its log derivative $\Delta \equiv \frac{\epsilon 3p}{3\epsilon}$, $\Delta' \equiv \frac{d\Delta}{d \ln \epsilon}$
- For comparison, construct EoSs with nonparametric Gaussian Process regression

Ultimate goal: Approx. likelihoods of various scenarios (QM core, destabilizing FOPT,...)

Tools: MCMC utilizing Bayesian inference: $P(EoS|data) = \frac{P(data|EoS)P(EoS)}{P(data)}$ [Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nättilä, AV, Nature

Comm. 14 (2023)]

Dense NM Pert. QM CFTs CEFT FOPT $c_{\rm s}^2$ [0.25, 0.6] $\lesssim 1/3$ 1/3 $\ll 1$ [0, 0.15]Δ $\approx 1/3$ [0.05, 0.25]0 $1/3 - p_{\rm PT}/\epsilon$ Δ' [-0.15, 0] ≈ 0 -0.4, -0.1 $1/3 - \Delta$ $d_{\rm c}$ $\approx 1/3$ $> 1/(3\sqrt{2})$ [0.25, 0.4] ≤ 0.2 0 ≈ 2.5 [1.95, 3.0][1, 1.7] $\ll 1$ [0.25, 0.35] $p/p_{\rm free}$ [0.5, 1] $p_{\rm PT}/p_{\rm free}$ $c_{s,4}^2$ (r + GW + X-ray) $c_{s,4}^2$ (no obs.) $c_{s,4}^2$ (r) $c_{s,4}^2$ (r + GW) $n [n_{\text{sat}}]$ n [n_{sat}] 12 12 13 14 13 14 11 14 11 R [km] $\epsilon \, [\text{MeV fm}^{-3}]$ $\epsilon \, [\text{MeV fm}^{-3}]$ $\epsilon \, [\text{MeV fm}^{-3}]$ $\epsilon \, [\text{MeV fm}^{-3}]$

1) All quantities studied $-\gamma$, c_s^2 , Δ , $\Delta' - c_s$ consistently approach their conformal limits close to (but below) the central densities of $M_{\rm TOV}$ stars

- 2) Optimal quantity to track: "conformal distance" $d_c \equiv \sqrt{\Delta^2 + (\Delta')^2}$
 - Its conformalization ensures that of all other quantities considered
 - Values in dense NM and perturbative QM sufficiently far apart
 - In FOPTs $d_c \ge 1/(3\sqrt{2}) \approx 0.24$
- : Our intentionally conservative criterion for near-conformality: $d_c < 0.2$

	CEFT	Dense NM	Pert. QM	CFTs	FOPT
$c_{\rm s}^2$ Δ Δ'		$[0.25, 0.6] \\ [0.05, 0.25] \\ [0.4, 0, 1]$	$\lesssim 1/3$ [0, 0.15]	1/3 0	$\begin{array}{c} 0\\ 1/3 - p_{\rm PT}/\epsilon\\ 1/2 & \Delta \end{array}$
$d_{ m c}$	$\approx 1/3$	[0.25, 0.4]	$\lesssim 0.2$	0	$\geq 1/(3\sqrt{2})$
$p/p_{ m free}$	≈ 2.3 $\ll 1$	[1.95, 5.0] [0.25, 0.35]	[1, 1.7] $[0.5, 1]$		$p_{ m PT}/p_{ m free}$

- 3) Likelihood of conformalized matter in centers of
- $1.4M_{\odot}$ NSs: 0%
- $2.0M_{\odot}$ NSs: 11%
- *M*_{TOV} NSs: 88%

New criterion **very** conservative: with old criterion ($\gamma < 1.75$) from our 2020 Nat. Phys., the above 88% would be 99.8%.

For remaining 12% of TOV-star centers, all EoSs feature FOPT-like behavior.

For weak coupling and CFTs, normalized pressure ∝ number of active degrees of freedom.

In centers of TOV stars, $p/p_{\rm FD}$ at approx. 2/3 of its value in pQCD, while at high T crossover transition from hadron gas to QGP at much smaller values of $p/p_{\rm SB}$.

∴ "Near-conformal" very likely implies "deconfined".

5) Results independent of the details of interpolation, with those from non-parametric Gaussian Process regression well in line with c_s^2 ones.

With GP method, possible to show that it is precisely the pQCD constraint that softens the EoS in the cores of TOV stars.

[Gorda, Komoltsev, Kurkela, Astrophys. J. 950 (2023)]

Remaining caveat: strong first-order PTs

Most current results approximate PTs as rapid crossovers, but some preliminary results with discontinuous transitions exist:

- In hard-limit setups, possible to exit EoS bounds based on rapid crossovers
 - Destabilizing solutions often extreme,
 but not unreasonably so
- Implications for likelihood of QM cores inconclusive so far

[Gorda, Hebeler, Kurkela Schwenk, AV, Astrophys. J. 955 (2023)] [Komoltsev, arXiv:2404.05637] [Blomqvist, Ecker, Gorda, AV, In preparation]

Conclusions

Main takeaways:

- 1) Strong evidence for rapid conformalization of matter near central densities of TOV stars, identifiable as onset of deconfinement
- 2) Only remaining alternative to QM cores: strong destabilizing firstorder phase transition, responsible for the value of M_{TOV}
 - Can this transition be constrained with postmerger GW signal?
- 3) In near future, dramatic improvements expected from pQCD calculations and observations (perhaps also from CET?), bringing robust discovery of QM cores within sight