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refo rm u Iate th e P ro b I e m as Large-basis shell model studies of low-lying excitatiens in light nuclei from *He to “Li have been performed

with a multivalued G-matrix effective interaction, as recently suggested by Haxton er al. Calculations were

performed relative to the vacuum (‘‘no core”) using very large, separable model spaces containing all excita-
an N RE I : H O B E I tions with unperturbed energies up to 84Q2. Using G matrices derived from a new Nijmegen potential, we

achieve a very satisfactory description of these excitations.
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Shell model not consistent with the necessary
form off the effective interaction



Hope one can find a
MB formulation
that requires only
the retained info.

Develop NN,NNN

interactions
in a convenient basis




Develop NN, |dentify the Hilbert
NNN EFT spaces where a

interactions in nuclear EFT might

C. L. Song:
Tom Luu:

WH:

K. McElvain:

KM+WH:

the same basis be possible

HOBET as a potential theory, to better understand its properties
The separation of the needed UV and IR integrations
Abstracting the theory: HOBET without potentials

LEC determination from phase shifts

A=3,4



Reduction of QCD directly to the nuclear scale
The reduction preserves translational invariance, continuity in energy

Rate of convergence can depend on the nuclear energy scale Ay and
wave-packet parameter b, but results always agree to within respective
convergence tolerances: there are no arbitrary cutoffs

Experimental information previously encoded in potentials (phases shifts)
is instead used directly in fixing operator coefficients

All operators have meaning only within the low-energy/momentum Hilbert
space and are regulated by Ay and b

Consequently the cutoff/regulator issues that become significant in chiral
potentials at higher scales (~ 450 MeV) are absent

Tews, Huth, Schwenk PRC 98 (2018) 024001

Reinert, Krebs, Epelbaum Eur Phys J A 54 (2018) 86
Epelbaum, Krebs, Meissner, Eur Phys JA 51 (2015) 53



position basis (lattice) <+ harmonic oscillator <> momentum basis

Wave packet bases are more efficient in describing bound states or
reactions over the region where the strong potential operates

The HO is the unique choice, because of its translational invariance

The HO is position-momentum self conjugate: it provides a parameter in
the ET that has physical relevance: r/b~ gb ~ 1

This parameter plays other roles: distinguishes the pion in HOBET from
other interactions, and distinguishes singlet and triplet channels

The HO is JUST an ET basis: scattering and bound states are treated in a
unified and even-handed way

(A ,b) both define P and regulate the interactions introduced in P



The operator expansion in HOBET is not one around r=0

It is simultaneously an expansion in r around b
and in p around |/b

The theory is forgiving in the choice of b, but good choices are those that
make these two expansions equivalently effective - the proper physical choice

This position/momentum equivalence is encoded in the HO ladder operators,
so it is no surprise that these are the building blocks of HOBET’s operators



HOBET’s form is constrained by the requirement that it reduces to
potential theory in the limit of local operators, so HOBET must reproduce
potential predictions - thus making the theory testable at every step

1
HYTP\W) =EP|W)  HY =P [H + H QH| P

E—QH
1 A
3 3 T

Properties of the BH equation:
must be solved self-consistently: E is the resulting eigenvalue (but easy)

applies equally to E<0 and E>0

- there are an infinite number of solutions, though P is finite: every state
with a nonzero overlap with P is generated

- solutions yield the exact E and exact projections of the eigenvectors:
nonorthogonal



Might think at this point that an energy-dependent interaction is an
unworkable starting point for an ET

But in fact all the simplicity of theories with fixed LECs can be retained

Once this is recognized, the explicit energy dependence becomes a
major advantage

HOBET’s LECs are derived from physical data mapped in E, (F)

© The explicit energy dependence allows one to precisely determine
the normalization of BH solutions

Elegant solution to the intruder state problem: there are none

Schucan and Weidenmuller; Annal. Phys. 76 (1973) 483
Barrett and Kirson, NPA 148 (1970) 145



HOBET’s symmetric expansion of position and momentum around b and |/b
omits both IR and UWV physics

For optimal b, these omissions are of comparable importance

But differ greatly in their consequences for the ET

« Energy

Ql (UV) p Q2 (IR)

(HO space where
Heff
is diagonalized)

Distance >



HOBET’s symmetric expansion of position and momentum around b and |/b
omits both IR and UWV physics

For optimal b, these omissions are of comparable importance

But differ greatly in their consequences for the ET

short range strong physics long range KE, pion physics
b Energy
Ql (UV) P Q2 (IR)
(HO space where
Heff

is diagonalized)

Distance >



HOBET’s symmetric expansion of position and momentum around b and |/b
omits both IR and UWV physics

For optimal b, these omissions are of comparable importance

But differ greatly in their consequences for the ET

unknown physics known physics
) Energy
QI (UV) p Q2 (IR)
(HO space where
Heff

is diagonalized)

Distance >



HOBET’s symmetric expansion of position and momentum around b and |/b
omits both IR and UWV physics

For optimal b, these omissions are of comparable importance

But differ greatly in their consequences for the ET

large energy differences smallest possible energy differences: no scale separation
> Energy
Ql (UVY) P Q2 (IR)
(HO space where
Heff

is diagonalized)

Distance >



HOBET’s symmetric expansion of position and momentum around b and |/b
omits both IR and UWV physics

For optimal b, these omissions are of comparable importance

But differ greatly in their consequences for the ET

energy independent sharply energy dependent
b Energy
Ql (UV) P Q2 (IR)
(HO space where
Heff

is diagonalized)

Distance >



Re-sum the BH Equation to Separate the Two Contributions

H:HIR+VUV

E G 1
E_ QHIR ©H = Fp_0H

GQHIR —

PH" P|W) = EP|U)

HY = H'Gopr + Guirg [VYY + VYV Gon QVYY] Gopir

WH and Tom Luu

~ The re-summation is exact and when applied to a potential, cures slow
convergence problems that Tom explored



Re-sum the BH Equation to Separate the Two Contributions

H:HIR+VUV

E B 1
GQHIR:E_QHIR GQH_E—QH

PH" P|W) = EP|U)

HY = H'Gopr + Guirg [VYY + VYV Gon QVYY] Gopir

WH and Tom Luu

© 95% of the energy dependence is absorbed by the infra-red Green’s
functions that are relatively easy to calculate

~ Any residual energy dependence is easily absorbed the momentum
dependence of the operators in the expansion we will introduce shortly



This form reflects important physics: like many systems, nuclei
involve a competition between the kinetic energy, which is minimized
by delocalizing, and the potential energy, minimized by localization

The control parameter for this physics is the binding energy

delocalized: V5 — 0

HOBET’s IR G’s inform the HO about
delocalization and the continuum threshold

................................................. -|E|

Arises naturally and explicitly in HOBET, regardless of how extreme
the weak binding becomes



Build the Effective Theory

H:HIR+VUV

E G 1
E_QHIE “H =B _on

GQHIR —

PH" P|W) = EP|U)

HY = H'Gopr + Guirg [VYY + VYV Gon QVYY] Gopir
Vs

~ The isolated short range physics is replaced by an operator expansion
constructed in second quantization from the HO ladder operators, with the
LECs as constants. So one has a simple theory but also the needed explicit
mapping from state energy to the observable, 6(E£)



Resume the BH Equation to Separate the Two Contributions

H:HIR+VUV

E G 1
E_ QHIR ©H = Fp_0H

GQHIR —

PH" P|W) = EP|U)

HY = HGopin + Guing [VYY +VYY Gon QVYY] Gopir
Vs

~ With the replacement all reference to short-range potentials is removed

~ The information previously encoded in potentials must now be used directly
to determine the LECs: LECs fixed by phase shifts



Ladder operator construction of Vs

(0} ol al) - b= L (9 b= L (.09
€T y? z (] \/§ a’l“z' () 1 \/5 ari 7

© From these operators one constructs the nodal and angular momentum
raising and lowering operators,

aoa|ntm)=-2+V(n—-1)(n+£0—1/2)|n—10m)

2 /! Cln+ ¢+
Eeas- o, omn,= (-1)"2" \/(26—1)!! [ ]

from which Vs is constructed



0 Operators are defined in P and generated by a progression in oscillator quanta

V2 =a750(r) +avro (aJr ®a' 5(r)+6(r)ac a)+---

o(r) = Z In"00) (n'00]6(r)|n00) (n00| = Z d>) 1n'00)(n00| (Regulated by P)
n'n € P n'n € P
2 [I'(n' + %)F(n + %)
(n’ — 1)!(n —1)!

1/2

00 _—
dn = 5

(nodal quantum no. expansion)

(' (¢ = 08)JM; TM7|Vyn(l = 08)JM; TMr) = dy,, [aro —2[(n' — 1) + (n — D]aR o+

0 If we had computed the LECs from a potential, we would have found that the LECs
are a non-local generalization of the familiar Talmi integrals

/ dr'dr 2" e Y0 () V (!, 1) r2P e 2V 0 ()

aro +» (p,p) =(0,0)  anro + (p',p) = (0,1) or (1,0)  etc.



[0 Operators are defined in P and generated by a progression in oscillator quanta

V5S — a%oé(r) + a]SVLO (aJr oal o(r)+46(r) a® EL) + ..

(If you are not comfortable with this, but the dimensions back in - all
coordinates and derivatives are scaled by b - then take b — oo (recover
momentum basis physics)

a3, o (V26(r) + 6(r) V2)



The interaction H'R

> This interaction comes from the KE and the IR contribution of V.

> Several equivalent expressions for V%

V7TIR _ Z |a > < Oé|v7fubtracted‘5 > < 5|
aB> N3LO t

in the Talmi integral expansion of this matrix

element, one retains ONLY contributions beyond
the order of the short-range expansion

© Supplies all Ialmi integrals not supplied by the UV operator expansion

~ Intuitively as one increases the fidelity of the short range expansion, the
missing physics one must provide should diminsh: HOBET behaves this way




© We work at N3LO, so V/* is zero until we reach p >4
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© We work at N3LO, so V/* is zero until we reach p >4
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~ One is free to calculate this

. ’ \ -
A L ] 4 | I »

\ 7 N 7 \ J
Y Y Y

LO (v = 0) NLO (v = 2) NNLO (v = 3)

© But numerically the short-range fidelity achieved at N3LO allows

subtracted OPEP subtracted (we verify empirically)
| % — Vi

~ Power counting, central and tensor interactions (illustrated for a potential)

central tensor 6 6 _ _ 9.4 mp
Aorder X Lorder Aorder X (1 o ?)IOTCZGT - ?lorder—l & = \/imb — { 1.7 m,

© Central interactions and vector-meson-range tensor interactions have a
simple power counting



~ One is free to calculate this

. ’ \ -
A L ] 4 | I »

\ 7 N 7 \ J
Y Y Y

LO (v = 0) NLO (v = 2) NNLO (v = 3)

© But numerically the short-range fidelity achieved at N3LO allows

subtracted OPFEP subtracted
V. — V.

~ Power counting, central and tensor interactions (illustrated for a potential)

tensor
order

central

order X Iorder a

a

> But the tensor pion channel breaks the pattern
© Of no consequence for a pion-full theory, as all pion LECs are added
~ But a pionless theory will converge in triplet channels more slowly,
without the addition of one pion LEC needed to restore the counting



> The IR interaction is known, and relatively easy to evaluate, as the matrix
elements of the free KE can be evaluated analytically

H' =Ty + V¥

b b b )

Heff IR _ HIR — T VIR
E—QHIR E—QT+E—TQ 4 E—QT+
E__ B [, B 7
E-QT E-T| E-T

so that the numerical cost of evaluation the Green’s function is a matrix
inversion in P: HO matrix elements of the free G are analytic

> Thus the KE is summed to all orders, which it must be to correctly capture
the physicsas E — 0



Continuum states: How is H*// (the LECs) determined?

E>0 so there are two scattering solutions that behave well at infinity

We pick an energy E: a HOBET solution at that energy is guaranteed
(except for a set of discrete energies known as the Kohn singularities)

We look up the phase shift, and build the associated Green’s function: we
have fixed the correct IR behavior

We solve the BH equation for this E and for some starting g¢// e.g.,LO

> We get an eigenvalue other than E. What can be wrong! It is not the IR,
but the UV content of H¢//

> We adjust aro until the eigenvalue becomes E



The algorithm implemented selects the relevant phase shift information

In our procedure we insert in our error budget a “cost function” which
uses naturalness to estimate the contribution of all omitted orders

In the first iteration we pick a low-energy point, determine aro , then step
gradually to higher energies until we see a discrepancy in the energy self-
consistency that approaches the cost function

~ We take that second point, and use two points to determine aro,anro

Then repeat: when fitting a new LEC, we find other LECs remain stable
except for the LEC last fit — this is the proper behavior of a good theory

The procedure tells one what information is relevant: data to ~ 70 MeV lab

With H¢/7 now fixed, we can predict bound-state eigenvalues



How do bound states work!?

HOBET in analytic in E, so the energy-independent continuum LECs
are the bound LECs

The Green’s function is simple: only one solution falls off at infinity
> The energy in the Green’s function must be the eigenvalue

> Make an initial guess at the energy, generate the eigenvalue, then
loop, using the eigenvalue as the new energy

- Convergence to self-consistency is rapid, typically to machine
precision in 4-6 iterations

~ Solutions exist at discrete energies

The N3LO continuum calculation yields a deuteron binding energy of
-2.2278 MeV. The N3LO error is 3 keV or about 0.1%
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The calculated projected (onto P) s-wave scattering wave functions evaluated for energies

not used in the fitting, compared to exactly calculated avI8 solutions:
the results are not distinguishable




HOBET was influenced by a paper that was impactful at its time
Gomes, Walecka, Weiskoff, “Properties of Nuclear Matter”, Annal Phys 3 (1950)

Sought to explain how hard-core scattering of nucleons could be compatible with
the success of mean-field descriptions of nuclei or nuclear matter

Picture emerged that nucleon pairs spend a short time at short distances,
scattering repeatedly, then “heal” to a soft state through IR interactions

This is basically the picture that emerges when HOBET is extended beyond A=2: it
guides re-summations that connect nuclear systems to A=2

HOBET allows one to subtract from the A-body problem all of the physics

constrained by A=2, which includes most of the 3-body physics: only a suppressed
3-body contribution remains




For illustration, consider A=3

If our LECs were derived from A=2, with A; + A, < A, then to avoid the need
for information that has been integrated out

AM+A+ A3 <A

The reorganization is similar to the following (two-body contribution to Heff)

HA=3 = py [H12 +H112 +H12%H12%H12 + ...| P3

Q3(P2 + ()2) His+...| P3

= P [H12 + Hqo

Resume according to the number of P, insertions

Each such term can be put into WH-Luu form: IR propagation, hard scattering, IR
propagation: one repeatedly returns to P, while staying in Q3

But P,Qs dependson As @ Aj+As+A3>A + A +A <A



The two-body contribution is entirely determined by two-body LECs, and takes the

form
T o] Vi

eff
But one does not see this in the fiterature, though its form is required

The same procedure can be employed for the rest of the interaction, the Faddeev
series (all of which is three-body from the perspective of Q3)

Much of this can be rewritten in terms of H¢J/
A three-body remainder that cannot be related to two-body physics

We have carried this out for A=3,4. Neglecting the three-body term

SHe: HOBET : — 6.884 MeV avl® exact : — 6.928 MeV

‘He: HOBET: — 24.103 MeV avl8 exact : — 24.22 MeV

McElvain and WH (preliminary)
The difference is small compared to the “true” three-body physics, e.g., Urbana IX



The three-body physics summed is of the form, where all intermediate states € ()3

P2 .
P3 » IR | P2
() P3

" » R | P2

and terms where the nucleon pair after scattering does not “heal”, e.g., where the
pair remains in a high momentum state until interacting again with another nucleon,
cannot be determined from our two-body results, and would need to be treated as a
3-body short-range operator. Those interactions involve the replacements

Thealmg ~ L Thealmg 2 ™ m;bQ
P2 P2 Q2

so all of this is familiar, except HOBET would never worry about Cp or Cg, but
only about the iteration to all orders, as this is what connects to observables



The field has most of its investment in one approach to EFT/nuclear physics, where
the challenges include

the large gap between the chiral potential and nuclear scales

the cutoff dependence

the nonintuitive behavior of the pion physics

the use of a plane-wave basis where technically all interactions are short-range

HOBET has had little investment - 3 students - but its attributes are attractive
a direct reduction of QCD to the nuclear scale/basis
cutoff independence
translational invariance
energy continuity: equivalent treatment of bound states and reactions
an elegant procedure for fixing LECs accurately from the minimum possible data
the absence of intruder states, opening up perturbative possibilities
good numerical results in the limited applications done to date

As in the stock market, diversification is usually beneficial — even though each
approach has the overhead of having to invent new techniques
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One pion vs two pion exchange
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One pion vs two pion exchange
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One pion vs two pion exchange
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