# HIBEAM and NNBAR at the European Spallation Source



University of Washington January 15, 2025

John Womersley University of Edinburgh



#### COMPLETION STATUS

PERSONNEL

NATIONALITIES

IN-KIND PARTNERS

USER PROGRAMME BEGINS

2022

70%

51



# Outline

- The European Spallation Source
- Motivation and current state of the art
- NNBAR project
- HIBEAM as a stepping-stone







ESS is the next generation European neutron scattering facility now under construction in Lund, Sweden

- Consortium of 13 European countries
- Construction started 2014
- Now ~85% complete
- User operations start 2027





## How a spallation neutron source works











15 neutron instruments approved and under construction

First beam on target end 2025; first science in 2026-27

22 instruments foreseen eventually













Inauguration of the ESS ion source - an in-kind contribution from Italy, with HM the King of Sweden and HE the President of the Italian Republic

























# **Particle physics at ESS**

- ESS business case based on delivering neutron fluxes for materials science and biology that are 10–20 x higher than existing facilities
- 2MW (eventually 5MW) proton beam, ~ 2 GeV, 3 ms pulse @14Hz
- Potential for high impact physics with neutrons (and neutrinos)
- 2015 expression of interest to ESS attracted ~ 100 authors from 26 institutes
- In 2018, Science Advisory Committee identified Particle Physics as one of the highest priority capability gaps for ESS



# Why search for neutron oscillations?

- In the absence of new physics at colliders, pursue all avenues
- BNV one of Sakharov conditions for matter-dominated universe
- Explore all the possibilities for  $\Delta B$ ,  $\Delta L$ ,  $\Delta(B + L) \neq 0$ :

Proton decay e. g.  $p \rightarrow \pi^0 + e^+$ :  $\Delta B \neq 0, \Delta L \neq 0$  $0\nu\beta\beta$ :  $\Delta B = 0, \Delta L = 2$ Neutron-antineutron oscillation:  $\Delta B = 2, \Delta L = 0$ 

• Search for  $n \rightarrow \overline{n}$  sensitive to the PeV scale for new physics



# **Current state of the art**







## Free neutron oscillation search at ILL (1995)

- 58MW research reactor in Grenoble
- 100m propagation in field-free region
- $\bar{n}$  annihilation in 130  $\mu m$  carbon target
- 0 events observed with 0 background expected:  $\tau > 0.86 \times 10^8 s$





### Bound neutrons – best limits from Super Kamiokande

- $n \rightarrow \overline{n}$  followed by  $\overline{n}$  annihilation and disintegration
- Nuclear interactions: model dependent
- Not background free

## $\tau > 4.7 imes 10^8 s$

We are probing the PeV scale!



# **NNBAR**

- High sensitivity free neutron search for  $n \rightarrow \overline{n}$
- 200m decay path
- New large beam port
- second moderator



## Goal: $\times$ 1000 improvement over ILL



# **NNBAR design**





#### Detector

Pionic final state  $\sqrt{s} \sim 2 \ GeV$ TPC for  $\pi^{\pm}$ Lead glass calorimeter for  $\pi^{0}$ Scintillator staves Cosmic veto



# **NNBAR performance**

tions.

al

- MCNP + GEANT4 beamline and detector simulation
- Background suppression criteria developed





# Delivers desired increase in sensitivity



## HIBEAM

NNBAR conceptual design shows what is possible

... but requires new large beam port and a second moderator, a new enclosure and long beamline with magnetic shielding

ESS priorities and funding will remain constrained until the 2030s

**Develop the HIBEAM concept as a stepping-stone** 













## **HIBEAM detector**

Cosmic veto



Pionic final state  $\sqrt{s} \sim 2 \ GeV$ TPC for  $\pi^{\pm}$ Crystal or scintillator calorimeter for  $\pi^{0}$ Option of using the existing WASA crystal calorimeter (Uppsala) Cosmic shielding and veto counters (cosmics are the dominant background)

Carbon foil were the annihilation takes place



# **Getting to HIBEAM**

#### VR RFI

Stockholm, Lund, Chalmers, ESS

Prototype development

- TPC
- WASA crystal calorimeter
- Scintillator/lead-glass calorimeter

Annihilation detector Neutron detector Beamline design







Front-end

SiPMs

Aluminium







# **Other physics with HIBEAM**

- Search for sterile neutrons regeneration target and scanning magnetic field
- Axion dark matter searches
- Potentially neutron EDM (repurposing the ORNL EDM apparatus)



# **Current Status**

- ESS council has approved 1.1M€ for neutron extraction system
- Construction and testing of annihilation detector prototype components; validation and simulation; system integration at the ESS test beam line
- Preparatory support from European Commission, Swedish Research Council
- Institutes from Sweden, USA, Israel, France, Italy, Brazil, Australia
- Co-spokespersons: G. Brooijmans (Columbia), D. Milstead (Stockholm)
- Ready to move forward when construction funding is secured (~ 15 M€ for minimum configuration)



# Conclusions

- ESS offers potentially very interesting new capabilities for particle physics
- HIBEAM beamline approved in principle,  $\times 10$  improvement in discovery potential for  $n \rightarrow \overline{n}$
- Ready to go once funding is secured
- NNBAR demonstrates the longer-term potential to explore two orders of magnitude further
- New collaborators welcome

### Thank you!

