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QCD confinement - hadronization

✦ QCD as the fundamental theory of strong interaction

Field, Feynman, NPB 1978
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QCD confinement - hadronization

✦ The first concept of parton fragmentation functions

Berman, Bjorken, Kogut, PRD 1971

James Bjorken, 1934-2024
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✦ Indispensable joint efforts from experiments and QCD theory

Lepton-lepton colliders Hadron-hadron colliders lepton-hadron colliders

11

QCD & Hadron Structure needs Lepton-Hadron Collider

q Hadrons are produced in hadron-hadron collisions:

§ Partonic structure 
§ Emergence of hadrons
§ Heavy ion target or beam(s) 

Also at the LHC

q Hadrons are produced in lepton-hadron collisions:

Also at COMPASS &  future EIC

§ Colliding hadron can be broken 
or stay intact! 

§ Imaging partonic structure
§ Emergence of hadrons 
§ Heavy ion target or beam

Ideal facility for hadron structure!

q Hadrons are produced from the energy in e+e- collisions:

§ No hadron to start with
§ Emergence of hadrons
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q Hadrons are produced from the energy in e+e- collisions:

§ No hadron to start with
§ Emergence of hadrons

BEPC, SuperKEKB HERA, JLab, EIC/EicCRHIC, LHC

‣ No hadron in the initial-state


‣ Hadrons are emerged from 
energy


‣ Not ideal for studying hadron 
structure, but ideal for FFs

‣ Hadrons in the initial-state


‣ Hadrons are emerged from 
energy


‣ Currently used for studying 
hadron structure and FFs

‣ Hadrons in the initial-state


‣ Hadrons are emerged from 
energy


‣ Ideal for studying hadron 
structure, can also involve FFs

Multiple channels to explore parton hadronization
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• Probability densities for finding color-neutral particles inside partons

Fragmentation Functions
✦ Leading twist unpolarized fragmentation functions

• Operator definition

• Time-like DGLAP QCD evolution

• Momentum sum rule

Perturbative splitting function:
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A clean access to fragmentation functions
✦ QCD factorization in electron-positron annihilation

σe+e−→hX = ̂σe+e−→i ⊗ Di→h

• Large momentum transfer 


• High precision control of 

• : fragmentation function, also called parton decay function, encodes the 

information on how patrons produced in hard scattering hadronize into the 
detected color singlet hadronic bound state.  

Q ≫ ΛQCD

̂σ
D

• Leading power/twist collinear factorization Collins, Soper, Sterman, 1989
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Fragmentation Functions
✦ Access to FFs in ep and pp collisions: universality of FFs

• Factorization in semi-inclusive deep inelastic scattering

• Factorization in single inclusive hadron production in proton-proton collisions

σlp→l′￼hX = fi/p ⊗ ̂σli→j ⊗ Dj→h

σpp→hX = fi/p ⊗ fj/p ⊗ ̂σij→k ⊗ Dk→h



FFs Evolution 

Coefficient functions  

Generation of Theory Data

Experimental Data

  Construction χ2
n

FF Parametrization 

MC Sampling of parameter space: new parameters introduced 

Minimization of χ2
global

Construction of  from χ2
global χ2

n

Hessian Matrix 
Constructed sampling the   function
χ2

global

Best  fit

Uncertainties
PDF eigen vectors set  
using Hessian Method

Fitting Framework

Methodology for global extraction of FFs
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FF global fitting panorama
✦ Joint efforts from experiments and theory in extracting FFs
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✦ Joint efforts from experiments and theory in extracting FFs

FF global fitting panorama

Not a complete list!
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FFs panorama

✦ The best known FFs - π
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FFs panorama
✦ kaon FFs
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FFs panorama
✦ Charged hadron FFs NNPDF, EPJC 2018 DSS, PRD 2007

It is proved that FFs are universal, 
why they look different?

‣ Different selections of experimental 
data ( kinematic cut)


‣ Different parametrization for FFs at 
initial scale, NNFF unbiased? DSS 
biased?


‣ Everything else is the same

More measurements are needed to 
further constrain the FFs, SIA will 
play a very important role!
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New opportunities in probing FFs at LHC
✦ Jet fragmentation function
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  ATLAS R=0.6 |y| < 1.2

Light hadrons work very well

Chien, Kang, Ringer, Vitev, HX, JHEP (2016)

σpp→J(h)X = fi/p ⊗ fj/p ⊗ ̂σij→k ⊗ 𝒢k→J(h)

zh =
ph

T

pT

F(zh, pT) =
dσJ(h)

dpTdηdzh / dσ
dpTdη

𝒢i→J(h) = 𝒥ij ⊗ Dj→h



15

Heavy flavor in jet
✦ Jet fragmentation function for D meson

• Failed to describe D meson production in jet using KKK08 FFs

• Leads to new constrain of heavy flavor FFs using measurement of D in jet
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  theory

  gluon-enhanced

Chien, Kang, Ringer, Vitev, HX, JHEP (2016) AKSRV, PRD (2017)

F(zh, pT) =
dσJ(h)

dpTdηdzh / dσ
dpTdη

zh =
ph

T
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✦ Jet fragmentation function for J/ψ

• Disagreement between default Pythia and data

• New insight into the shower mechanism for  production, and new constrain of 

LDMEs
J/ψ

sections of jets with and without the reconstruction of the
J=ψ in the jet, while η and pT are the jet rapidity and
transverse momentum, respectively. Furthermore, zh ¼
pþ
J=ψ=p

þ
jet denotes the momentum fraction of the jet carried

by the J=ψ . The plus momentum is defined for any four
vector vμ as vþ ¼ v0 þ vz in a frame where the “z” axis is
along the jet direction. The factorized form of the differ-
ential cross section for J=ψ production within a jet is given
by [24,26]

dσJ=ψ

dpTdηdzh
¼

X

a;b;c

fa ⊗ fb ⊗ Hc
ab ⊗ GJ=ψ

c : ð2Þ

Here, ⊗ denotes convolution products over the partonic
momentum fractions,

P
a;b;c represents the sum over all

relevant partonic channels, and we have suppressed the
arguments of the various functions for simplicity. See [26]
for more details. The fa;b represent the parton distribution
functions and Hc

ab are the hard functions [33]. The
GJ=ψ
c ðz; zh; pþ

jetR; μÞ are the semi-inclusive fragmenting jet
functions (siFJFs), which describe the fragmentation of a
J=ψ meson inside a jet with radiusR. The jet is initiated by a
parton c and carries amomentum fraction z ¼ pþ

jet=p
þ
c of the

outgoing parton. Note that we consider a cross section that is
inclusive about everything else in the final state besides the
identified jet and its substructure [24,25].
The siFJFs follow timelike DGLAP evolution equations,

the same as those for the usual fragmentation functions
which describe the transition of a final state parton into a
specific observed hadron [26]. By evolving the siFJFs
through the DGLAP equations from their characteristic
scale to the hard scale μ ∼ pT , one can perform lnR
resummation for narrow jets. At the same time, the
siFJFs describe the distribution of hadrons inside the jet
and, thus, contain important information about the hadro-
nization of J=ψ mesons. In particular, GJ=ψ

i can be
expanded in terms of J=ψ fragmentation functions (FFs)
as follows:

GJ=ψ
i ðz; zh; pþ

jetR; μÞ ¼
X

j

Z
1

zh

dz0h
z0h

J ijðz; zh=z0h; pþ
jetR; μÞ

×DJ=ψ
j ðz0h; μÞ þOðm2

J=ψ=ðp
þ
jetRÞ2Þ:

ð3Þ

The coefficients J ij were derived in [26], where it was also
shown that the natural matching scale should be μG ∼ pTR.
Within the NRQCD formalism, the J=ψ FFs can be further
factorized at an initial scale μ0 ∼mJ=ψ with the following
form:

Di→J=ψðz0h; μ0Þ ¼
X

n

d̂i→½QQ̄ðnÞ&ðz0h; μ0Þ
D
OJ=ψ

½QQ̄ðnÞ&

E
; ð4Þ

where the summation runs over all intermediate nonrela-
tivistic QQ̄ states, labeled as n ¼ 2Sþ1L½1;8&

J , with super-
script [1] (or [8]) denoting color singlet (or octet) state. The
functions d̂i→½QQ̄ðnÞ& are the short-distance coefficients and
are perturbatively calculable within NRQCD and have been
derived in the past, see, e.g., Refs. [34,35]. On the other
hand, hOJ=ψ

½QQ̄ðnÞ&i are the nonperturbative NRQCD LDMEs.
We use the calculated J=ψ FFs at an initial scale μ ¼ 3mc,
and evolve them to the scale μG ¼ pTR to be used
in Eq. (3).
J=ψ polarization in the jet.—Besides measuring the J=ψ

distribution in the jet, one can study the polarization of
the produced J=ψ . The polarization can be determined
analogously to single inclusive J=ψ production, e.g., by
measuring the angular distribution of the decay lepton pair
lþl− in the so-called helicity frame [36]

dσJ=ψð→lþl−Þ

d cos θ
∝ 1þ λF cos2 θ: ð5Þ

Here, λF denotes the J=ψ polarization measured in a jet,
and λF ¼ 1ð−1Þ corresponds to a purely transversely
(longitudinally) polarized J=ψ . Based on the factorization
formalism in Eq. (2), λF can be computed as follows:

λFðzh; pTÞ ¼
FJ=ψ
T − FJ=ψ

L

FJ=ψ
T þ FJ=ψ

L

; ð6Þ

where FJ=ψ
T;L are the jet fragmentation functions for produc-

ing a J=ψ with transverse (or longitudinal) polarization.
The total unpolarized jet fragmentation function is given
by: FJ=ψ ¼ 2FJ=ψ

T þ FJ=ψ
L . Since the J=ψ polarization is

taken into account by the corresponding fragmentation
functions, the FJ=ψ

T;L can be calculated using the same
factorization formalism in Eq. (2). One only has to replace
the unpolarized FFsDi→J=ψ in Eq. (4) by the polarized ones
DT;L

i→J=ψ . Note that the polarized FFs DT;L
i→J=ψ can be

calculated within NRQCD analogously

DT;L
i→J=ψðz0h; μ0Þ ¼

X

n

d̂T;Li→½QQ̄ðnÞ&ðz
0
h; μ0Þ

D
OJ=ψ

½QQ̄ðnÞ&

E
: ð7Þ

The polarized short-distance coefficients for the states 3S½1&1 ,
1S½8&0 , 3S½8&1 , 3P½8&

J up to the order of α2s are given in [37] (For

the state 1S½8&0 , the order α3s contribution was calculated

recently [38] and the heavy quark to 3S½1&1 FF to next-to-
leading order was computed in [39].), while the polarized
short-distance coefficients for g → 3S½1&1 were calculated in
[40] which first appear at order α3s.
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Quarkonium production in the jet

§ J/!-in-jet measurement from LHCb

15

Production: Baumgart, Leibovich, Mehen, Rothstein, JHEP 14
Polarization: Kang, Ringer, Xing, et.al., PRL17

PRL 17

d�J/ (!`+`�)

d cos ✓
/ 1 + �F cos2 ✓ �F =

(
+1, transversely polarized

�1, longitudinally polarized

Bain et al, PRL (2017) Kang, Qiu, Ringer, HX, Zhang

PRL (2017)

Heavy flavor in jet



global analysis

preliminary
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✦ Jet fragmentation function for  at J/ψ pT ≫ m

• Gluon fragmentation dominates high-pt  
production

J/ψ

Zhang, HX, 2403.12704

Heavy flavor in jet

Li, HX, 2024

NRQCD
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New efforts from NPC
✦ Nonperturbative Physics Collaboration - NPC (SJTU+SCNU+IMP)

• Parametrization of FFs to charge pion/
kaon/proton at initial scale Q0 = 5GeV

• Joint determination of FFs to charge 
pion/kaon/proton at NLO

• Strong selection criteria on the 
kinematics of fragmentation to ensure 
validity of leading twist factorization 

Gao, Liu, Shen, HX, Zhao, PRL, 2024 
Gao, Liu, Shen, HX, Zhao, arXiv: 2407.04422
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New efforts from NPC
✦  NPC23 FFs

• Higher precision determination of FFs for charged hadron

Gao, Liu, Shen, HX, Zhao, PRL, 2024
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New efforts from NPC
✦ NPC23 vs. others

• General agreement for u/d quark 
to pion


• Discrepancies for FFs to kaon/
proton and gluon FFs


• Future benchmark works 
involving different groups are 
needed to clarify the 
discrepancies
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New efforts from NPC
✦ momentum sum rule

• Hint for violation of momentum sum rule?

Gao, Liu, Shen, HX, Zhao, PRL, 2024
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Parton to hadron fragmentation in jet
✦ A comprehensive analysis for jet fragmentation functions

• Collinear fragmenting jet function in semi-inclusive jet production

• An alternative way to explore different types of FFs

• Similar FJFs can be defined in exclusive jet production

Kang, HX, Zhao, Zhou, JHEP, 2024
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Parton to hadron fragmentation in jet
✦ single inclusive jet production in hadronic collisions

• Unpolarized case as an example

Kang, HX, Zhao, Zhou, 2024
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Transverse momentum dependent FFs
✦ FFs: 8 transverse momentum dependent FFs at leading twist
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Testing leading power QCD factorization

✦ What’s the boundary for  to ensure the validity of leading twist QCD 
factorization?

Q2

perturbative	expansion

Multiple	 scattering
expansion

�h
phys =

h
↵0
sC

(0)
2 + ↵1

sC
(1)
2 + ↵2

sC
(2)
2 + . . .

i
⌦ T2(x)

+
1

Q

h
↵0
sC

(0)
3 + ↵1

sC
(1)
3 + ↵2

sC
(2)
3 + . . .

i
⌦ T3(x)

+
1

Q2

h
↵0
sC

(0)
4 + ↵1

sC
(1)
4 + ↵2

sC
(2)
4 + . . .

i
⌦ T4(x)

+ . . .

✦ Generalized factorization theorem

twist expansion
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Testing leading power QCD factorization at BESIII
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Test leading power QCD factorization at BES

BESIII, PRL 2023
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Testing leading power QCD factorization at BES/STCF 
✦ A test from data driving analysis of high twist contribution

σ ≈ σLT [1 + ∑
i

Ni
xai(1 − x)bi

Q2i ]

• Hint of leading twist 
factorization breaking?


BESIII + Li, HX, PRL, 2024

Li, Anderle, HX, Zhao, 2024.11527
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✦ Probe the nucleon structure

FFs as a tool to probe nucleon structure

JAM, PRD 2021

A simultaneous fit of PDF and FF can provide further constrain for flavor separation

σlp→l′￼hX = fi/p ⊗ ̂σli→j ⊗ Dj→h

EIC
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Duwentaster et al, PRD 2021✦ Inclusive hadron production in p+Pb collisions 

FFs as a tool to probe nuclear PDFs

Precise information of FF is helpful for nuclear PDF determination 

σpPb→hX = fi/p ⊗ fj/Pb ⊗ ̂σij→k ⊗ Dk→h
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FFs as a tool to probe hot dense medium

✦ Track the time evolution of nuclear medium

• Observables involving FFs: single inclusive hadron, di-hadron, photon/Z tagged 
hadron, jet fragmentation function

σAA→hX = fi/A ⊗ fj/A ⊗ σ̃ij→k ⊗ Dk→h



32

Xing, Cao, Qin, PLB, 2023

• Verify the flavor hierarchy of parton energy loss in medium


• Extract the jet transport parameter of quark-gluon plasma

FFs as a tool to probe hot dense medium

✦ Extract the medium property

Zhang, Wang, HX, Zhang, PLB, 2024
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Can we simulate parton fragmentation from first principle?
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Dh
q(z) = zd−3 ∫

dy−

4π
e−iy−p+/zTr{⟨Ω |ψ(y−)∑

X

|h, X⟩⟨h, X | ψ̄(0) |Ω⟩γ+}
1. Real-time dynamical quantity -> sign problem 

2. Unidentified  -> exponentially increasing complexity X

Challenges in lattice QCD for FFs

orphans

Collins, Rogers, PRD 2024



✦ A toy model - 1+1D NJL (Gross, Neveu, 1974), no gauge field

•  Map QFT to qubits+gates system


•  Prepare the external hadronic state 


•  Evaluate the real-time dynamical correlation function


•  Measurement of final observable


|h, X⟩

✦ Challenges in quantum computing

Dh
q(z) = zd−3 ∫

dy−

4π
e−iy−p+/zTr{⟨Ω |ψ(y−)∑

X

|h, X⟩⟨h, X | ψ̄(0) |Ω⟩γ+}

Simulate parton fragmentation on quantum computer
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✦ Quantum field to qubits+gates

• Discretization: staggered fermion, put different 
fermion components, flavors on different sites


     


•  Jordan-Wigner transformation


     


• Discretized PDF:   


   


ψ = (ψ1
ψ2) → ( ϕ2n

ϕ2n+1)

ϕn = ∏
i<n

Zi(X + iY)n

ℒ = ψ̄(i∂/ − m)ψ + g(ψ̄ψ)2

1+1D NJL Model
• Lagrangian: 

• Discretization: staggered fermion 

• Hamiltonian:

ℒ = ψ̄α(iγμ∂μ − mα)ψα + g(ψ̄αψα)2

ψα(x) = (
ψα,1(x)
ψα,2(x)) ≡ (

ϕα,2n

ϕα,2n+1)

H = ∑
α,n

[− i
2 ϕ†

α,nϕα,n+1 − h . c) + (−1)nmαϕ†
α,nϕα,n]

−g ∑
α,n=even

[ϕ†
α,nϕα,n + ϕ†

α,n+1ϕα,n+1 − 2ϕ†
α,nϕα,nϕ†

α,n+1ϕα,n+1]

Qubitization of Hamitonian
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...
...

...
...

...
...

𝜎2𝑖𝑧
𝜎2𝑖+1𝑧

LOCAL SIHO ℋ𝑖

QUBIT 𝑁

QUBIT 0
QUBIT 2𝑖
QUBIT 2𝑖 + 1
QUBIT −2𝑦 + 𝜇
QUBIT −2𝑗 + 𝜈
QUBIT 𝑁 − 1

H

• VQE

• Semi-inclusive hadronic operator

Li, HX, Zhang, arXiv:2406.05683

Quantum circuit for FFs
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• Converges with the increase of qubit 
number N


• Finite volume effect in large z


• Qualitative agreement with real FFs 
and other model calculations

FFs from quantum simulation



39

Summary

✦ NPC23 - precise determination of parton fragmentation from 
world data 


✦ Unique opportunities to test QCD factorization for hadron  
production at BESIII experiment


✦ New approach for first principle calculation - quantum 
computing

Thanks for your attention!


