Yukari Yamauchi

Based on

- arXiv:2310.04635 with Landon Buskirk, Pablo Giuliani, Kyle Godbey (FRIB)
- Ongoing work with Lindsey Schneider (INT)

Codes: https://gitlab.com/yyamauchi/uq_nf

August 23rd, 2024, INT workshop "Heavy Ion Physics in the Era of EIC"

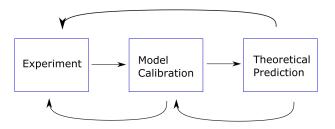
Bayesian analysis

Bayes theorem provides a posterior distribution of model parameters lpha

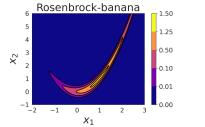
$$egin{aligned} & P(oldsymbollpha | oldsymbol Y) = rac{P(oldsymbol Y | oldsymbollpha) P(oldsymbollpha)}{P(oldsymbol Y)} \end{aligned}$$

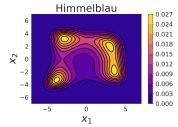
given observation Y.

How do we sample from $P(\alpha | \mathbf{Y})$? Typically MCMC

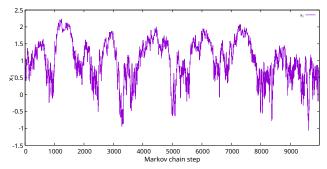


Challenges in Markov-chain Monte Carlo simulation

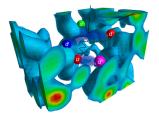




Auto-correlations



Sampling problems in nuclear physics



Lattice QCD

Many-body wavefunction

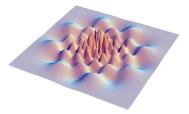


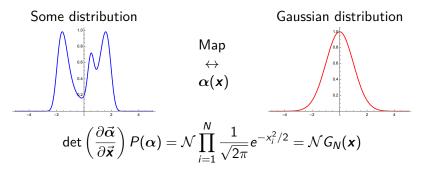
Image credit: Derek Leinweber

Image credit: David Tong

$$\langle \mathcal{O} \rangle = \frac{\int d\vec{x} \ P(\vec{x}) \ \mathcal{O}(\vec{x})}{\int d\vec{x} \ P(x)}$$

Normalizing flows

is a map $\pmb{lpha}\leftrightarrow \pmb{x}$:



if such a map exists, then

$$\langle \mathcal{O} \rangle = \frac{\int d\alpha \ P(\alpha) \mathcal{O}(\alpha)}{\int d\alpha \ P(\alpha)} = \frac{\int dx \ G_N(x) \mathcal{O}(x(\alpha))}{\int dx \ G_N(x)}$$

Machine-learned normalizing flow

Find an approximate normalizing flow

$$\mathcal{N}\prod_{i=1}^{N}dx_{i}\;e^{-x_{i}^{2}/2}=dlpha\;\mathcal{Q}(lpha)pprox dlpha\;\mathcal{P}(lpha)$$

by optimizing parameters in the neural network.

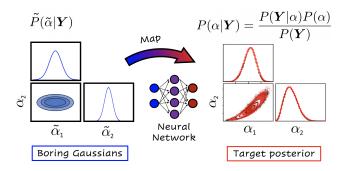


Image credit: Pablu Giuliani

Normalizing flow is approximate

 $P(\alpha)$: True posterior distribution $Q(\alpha)$: Distribution induced from normalizing flow

$$\mathcal{N}\prod_{i=1}^{N}dx_{i}\;e^{-x_{i}^{2}/2}=dlpha\;\mathcal{Q}(oldsymbol{lpha})pprox dlpha\;\mathcal{P}(oldsymbol{lpha})$$

To sample from $P(\alpha)$, Reweight

for samples drawn from $Q(\alpha)$, assign the weight $\frac{P(\alpha)}{Q(\alpha)}$

To measure $\langle \mathcal{O} \rangle$

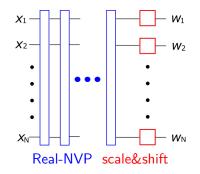
$$\langle \mathcal{O} \rangle = \frac{\int d\alpha \ P(\alpha) \ \mathcal{O}(\alpha)}{\int d\alpha \ P(\alpha)} = \frac{\langle \frac{P(\alpha)}{Q(\alpha)} \ \mathcal{O} \rangle_Q}{\langle \frac{P(\alpha)}{Q(\alpha)} \rangle_Q}$$

Algorithm

Goal:

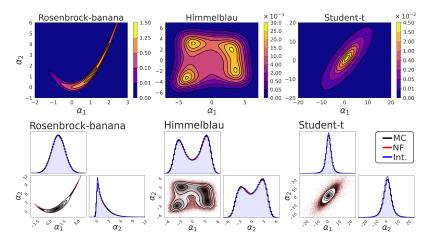
Construct a normalizing flow that yields $\approx \textit{P}(\alpha|\textbf{\textit{Y}})$

- 1. Prepare train data via MCMC
- 2. Initialize NN as a Gaussian fit
- 3. Train via Jeffreys' divergence $D(P|Q) = \int d\alpha \left(\tilde{P}\log\frac{P}{Q} + \tilde{Q}\log\frac{Q}{P}\right)$
 - ${\rm ADAM}$ with learning rate of 10^{-3}
 - 1000 samples/train step



2-dimensional examples

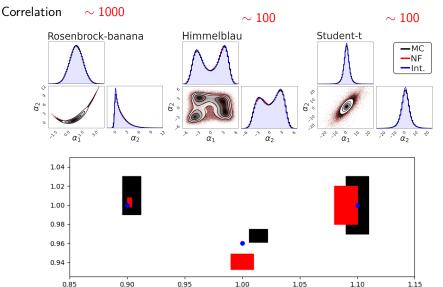
blue: exact, black: train data, red: from normalizing flow



 $D = 1.0 \times 10^{-5} \qquad 3.8 \times 10^{-3} \qquad 6.0 \times 10^{-5}$

How correct are the normalizing flows?

MCMC samples: 10^5 samples with 100-step skip NF samples: 10^5 samples



More demonstration: relativistic mean field model²

A model of nucleons, mesons (σ, ω, ρ) and photon

$$\mathcal{L}_{\text{int}} = \bar{\psi} \left[g_{s} \phi - \left(g_{v} V_{\mu} + \frac{g_{\rho}}{2} \tau \cdot b_{\mu} + \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right) \gamma^{\mu} \right] \psi$$

$$- \frac{\kappa}{3!} (g_{s} \phi)^{3} - \frac{\lambda}{4!} (g_{s} \phi)^{4} + \frac{\zeta}{4!} g_{v}^{4} (V_{\mu} V^{\mu})^{2} + \Lambda_{v} \left(g_{\rho}^{2} b_{\mu} \cdot b^{\mu} \right) \left(g_{v}^{2} V_{\nu} V^{\nu} \right)$$

with

 $\psi:$ nucleons, $\phi:$ σ meson, V: ω meson, b: ρ meson

In the mean-field limit

quantum fields \rightarrow expectation values

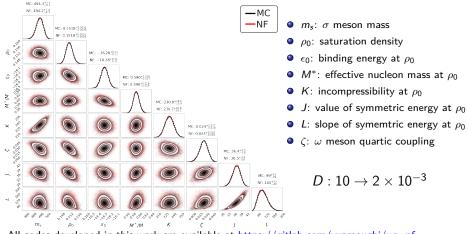
The parameters to calibrate¹

 $\begin{array}{l} m_{\rm s}, \ g_{\rm s}, \ g_{\rm v}, \ g_{\rho}, \ \kappa, \ \lambda, \ \Lambda_{\rm v}, \ \zeta \\ (m_{\omega} = 783 \text{ MeV}, \ m_{\rho} = 763 \text{ MeV}) \\ \text{Calibrated by experimental binding energies and charge radii of nuclei} \\ ({}^{16}\text{O}, \, {}^{40}\text{Ca}, \, {}^{48}\text{Ca}, \, {}^{68}\text{Ni}, \, {}^{90}\text{Zr}, \, {}^{100}\text{Sn}, \, {}^{116}\text{Sn}, \, {}^{132}\text{Sn}, \, {}^{144}\text{Sm}, \, {}^{208}\text{Pb}) \end{array}$

¹P. Giuliani, K. Godbey, et al., arXiv:2209.13039[nucl-th]

²W. Chen and J. Piekarewicz, arXiv:1408.4149

Normalizing flows for the relativistic mean field model³

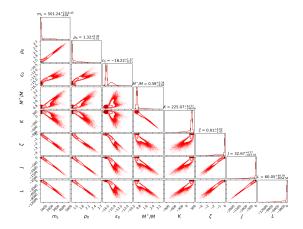


All codes developed in this work are available at https://gitlab.com/yyamauchi/uq_nf

³YY, L. Buskirk, P. Giuliani, and K. Godbey, arXiv:2310.04635 [nucl-th]

An issue with supervised training

Outcome (NF) depends on your data (MCMC samples) quality



Self learning. No MCMC. Always sample from Gaussian

For *N* independent samples

• MCMC :
$$N_{\text{therm}} + L \times N$$

• NF : $N_{\text{train}} + N / E$ with $E = \frac{1}{\langle (P/Q)^2 \rangle_Q}$ (effective sampling size)
Total # samples needed
 $L N$

N (Independent samples)

Summary and outlook

Why NF?

- Neural network can parametrize a large family of functions efficiently.
- Normalizing flows serve as a compression tool for $P(\alpha|\mathbf{Y})$.
- One can generate more samples easily, quickly, in parallel (including reweighting).

Further algorithmic development:

- A more efficient and universal algorithm.
- Rigorous quantification of the correctness of NF.
- Establishing an online platform to share the resources.

Applications:

- BSM physics with Vincenzo Cirigliano, Wouter Dekens, Sebastián Urrutia-Quiroga
- Color Glass Condensate physics with Farid Salazar

• • • •

Thank you!