Reduced basis methods (RBMs) for few-body resonances in nuclei

Nuwan Yapa

Florida State University

INT, University of Washington, Seattle

October 2024

Overview

- Introduction to nuclear resonances / Gamow states
- Non-Hermitian methods
	- Complex scaling
	- Berggren basis
- Eigenvector continuation (EC) as a reduced basis method
	- Resonance EC (narrow-to-broad)
	- Extrapolating across threshold (bound–to–resonance)
- Results for ⁶He and ⁶Be

Motivation

Nazarewicz, W. The limits of nuclear mass and charge. *Nature Phys* **14**, 537–541 (2018).

- Studying drip lines (edges of stability)
- Exotic decay modes / cluster radioactivity e.g.: ^{223}Ra → ^{14}C + ^{209}Pb
- Broad resonances

e.g.: ⁷B, ⁸C, ⁹N or 4n

What are resonances?

Resonances are peaks of the scattering cross section observed in experiments:

J. R. Taylor, *Scattering Theory: The Quantum Theory of Nonrelativistic Collisions* (Dover Publications, Newburyport, 2012).

F. Barranco, G. Potel, R. A. Broglia, and E. Vigezzi, *Structure and Reactions of* 11Be*: Many-Body Basis for Single-Neutron Halo*, Phys. Rev. Lett. **119**, 082501 (2017).

Gamow states

Solutions of the time –independent Schrödinger equation

$$
\left[\frac{1}{2\mu}\frac{d^2}{dr^2} - \frac{l(l+1)}{2\mu r^2} - V(r) + E\right]u_{l,p}(r) = 0
$$

with complex eigenvalues

$$
E=E_R-\frac{\mathrm{i}\Gamma}{2}
$$

Im(E) < 0 \Rightarrow state decays with time evolution e^{-iHt/ħ} while the width Γ determines the halflife via $T_{1/2} = \frac{\ln 2}{\Gamma}$ Γ .

Complex-scaling method (CSM)

Aguilar, Balslev and Combes (1971): transform $r\to r e^{i\phi}$ for some $\phi > \arg p$ Or equivalently $k \to k e^{-i\phi}$ (since $[r, k] = [r e^{i\phi}, k e^{-i\phi}] = i$) Need to be careful as ϕ too large might cause $V(r)$ to diverge

Extension to few-body systems

Choice of coordinate system:

coordinates 2. Simple relative coordinates

1. Single–particle

3. Jacobi coordinates All of them can be expressed as linear transformations ⇒ CSM is implemented via

 $\vec{r}_j \rightarrow \vec{r}_j e^{i\phi}$ for $j = 1, ..., n-1$

Complex-scaling in various bases

Finite-volume (FV) basis with a simple lattice discretization can be complex-scaled trivially.

 E has dependence on box size L but converges at $L \rightarrow \infty$.

Lüscher–type formalism can be employed to derive a correction term

$$
\Delta E(L,\phi) \approx \frac{3\gamma^2}{\mu e^{i\phi}L} \exp(ip_{\infty} e^{i\phi}L) \quad \text{up to LO}
$$

Complex-scaling in various bases

In harmonic oscillator (HO) basis, $r\to r e^{i\phi}$ is equivalent to $\omega\to \omega e^{-2i\phi}$

This can be seen from the eigenfunctions

$$
\langle \vec{r} | n, l, m \rangle = \sqrt{\frac{\omega^{l+3/2}}{\sqrt{\pi}} \frac{2^{n+l+2} n!}{(2n+2l+1)!!}} r^{l+1} \exp\left(-\frac{\omega r^2}{2}\right) L_n^{\left(l+\frac{1}{2}\right)} (\omega r^2) Y_l^m(\hat{r})
$$

Berggren basis

Complex–scaled contour for comparison

Straight line contour \rightarrow Curved contour

Generator potential gives basis poles

$$
\mathbb{1}=\sum_B|B\rangle\langle B|+\sum_R|R\rangle\langle R|+\int_c dk\;|k_+\rangle\langle k_+|
$$

The poles offload some weight off the $\text{continuum} \implies \text{can use a coarser}$ discretization for the contour

Berggren basis + shell model = Gamow shell model (GSM)

Non-Hermitian QM

Either method breaks the PT -symmetry $\Rightarrow H \neq H^{\dagger}$ (non-Hermitian) Transpose symmetry is still preserved $\Rightarrow H = H^T$ (complex & symmetric) ∴ use "c-product" in place of the inner product

$$
\langle \psi_1 | \psi_2 \rangle \rightarrow (\psi_1 | \psi_2) = \int dx \; \psi_1(x) \, \psi_2(x)
$$
\nno-complex conjugation

Beware of self-orthogonal states: $(\psi | \psi) = 0$

Eigenvector continuation (EC) as a reduced basis method (RBM)

Motivation: Extremal eigenvectors only explore a small subspace of the large Hilbert space, to a good approximation.

Resonance EC

Narrow–to–broad extrapolation for a 2–body toy model

 $V(r) = c \left[-5e^{-r^2/3} + 2e^{-r^2/10} \right]$

Beyond the contour, reduced basis outperforms the original basis!

Reason: Any information about the original basis (contour + poles) is lost after the projection.

N. Yapa, S. König, and K. Fossez, arXiv:2409.03116 (2024).

Resonance EC

The projected matrix elements

$$
\langle \psi_i | H | \psi_j \rangle = \sum_B ... + \sum_R ... + \int_C dE ...
$$

do not depend on the contour $c = c_1, c_2$ due
to the Cauchy integral theorem.

Extrapolation with c_1 should work \Rightarrow so should c_2 .

Training in 1st quadrant

 $H = H_0 + c V$

Complexify c to move the pole into the 1st quadrant

$$
c\rightarrow c-i\epsilon
$$

and pick a random sample in the neighborhood.

Somewhat similar to recent work by X. Zhang (2024)

Bound states and resonances across the threshold

A bound state can become a resonance (and vice versa) across the threshold when a parameter is tuned (eg: a coupling constant c in $H = H_0 + c V$).

Exceptional point at $p = 0$ (threshold)

"Universal" behavior near threshold: $p \approx \pm i \alpha \sqrt{c - c_0}$

Naïve bound–to–resonance EC

$$
(H_{EC})_{ij} = \langle \psi_i | H(c_{new}) | \psi_j \rangle
$$

= $\oint dr \oint dr' \psi_i(r) \langle r | H(c_{new}) | r' \rangle \psi_i(r')$
= $\int_0^\infty dr \int_0^\infty dr' \psi_i(r) \langle r | H(c_{new}) | r' \rangle \psi_i(r') \in \mathbb{R}$
real

∴ Extrapolated eigenvalues will be real

The orthonormalization transformation $\{|\psi_i\rangle\} \rightarrow \{|\varphi_i\rangle\}$ does not affect this.

More on exceptional points

 $p \approx \pm i \alpha \sqrt{c - c_0}$ Both eigenvectors and eigenvalues coincide at $p = 0$

(in contrast to degeneracy)

EC is known to breakdown across singularities

Square–root–like Reimann surface with a branch point singularity at $p = 0$

Bound/virtual–to–resonance EC

training (bound)

training (virtual)

exact

extrapolated

 $(H_{EC})_{ij} = \langle \psi_i | H(c_{new}) | \psi_j \rangle \in \mathbb{R}$ still holds.

Cannot use CSM for virtual states. Calculation done in in real r -space using Zeldovich regularization:

$$
\langle \psi_1 | \psi_2 \rangle = \lim_{\mu \to 0} \int_0^\infty e^{-\mu r^2} u_1(r) u_2(r) dr
$$

regular

Complex–augmented EC (CA–EC)

Problem: Interior region can be emulated by training vectors, but asymptotic region cannot.

Fix: Augment the EC basis by taking the complex conjugate of the training vectors.

Complex–augmented EC (CA–EC)

Complex conjugation of training states results in $p \to p e^{-2i\phi}$ or $E \to E e^{-4i\phi}$.

They are now much closer to the target resonance.

Bound–to–resonance extrapolation results: ⁶He

⁴He + $n + n$ system

Core-nucleon interaction = Woods-Saxon fitted to 4 He-*n* phase shifts

 $n-n$ interaction = regularized contact interaction in $(S, T) = (0, 1)$ channel $\langle S = 0, T = 1, r | V | S = 0, T = 1, r \rangle = c f(r)$

Top: Naïve EC with 10 training states Middle: CA-EC with 3 training states Bottom: CA-EC with 10 training states parameter to be varied

Bound–to–resonance extrapolation results: ⁶Be

Similar interaction as before, but for a 4 He + $p + p$ system

⇒ works well enough for Coulomb interaction (not short–ranged)

Next goal: Attempt ⁷N (5 proton emitter)

Thank you!

Kévin Fossez Sebastian König

My collaborators: Work supported by:

U.S. Department of Energy, Office of Science, Office of Nuclear Physics, by the STREAMLINE Collaboration Awards Nos. DE-SC0024520 and DE-SC0024646

Backup: BV2R in p-space

Backup: What are resonances?

Resonances are peaks of the scattering cross section observed in experiments:

J. R. Taylor, *Scattering Theory: The Quantum Theory of Nonrelativistic Collisions* (Dover Publications, Newburyport, 2012).

Some nuclei created in the lab are observed to be unbound resonances (e.g. ²⁷0, ²⁸0). Also occur as metastable states of many nuclei (e.g. $11Be$) encountered in decay chains.