

Proton decay matrix elements on the lattice

Jun-Sik Yoo, Yasumichi Aoki, Taku Izubuchi, Amarjit Soni, and Sergey Syritsyn PHYS. REV. D 105, 074501 (2022)

INT Workshop, Seattle, Washington January 15, 2025

Motivation

- Proton lifetime tests baryon number conservation
- Probes scales inaccessible to colliders: Limits on GUT, extra dim., etc
- Limits on stability of nuclear matter

UNCLASSIFIED

Figure: Proton lifetime bound

Experimental sensitivity to proton lifetime

- Hyper Kamiokande (Water Cherenkov detector) $p \rightarrow e^+\pi^0: 7.8 \times 10^{34}$ years $p \rightarrow \bar{\nu}K^+: 3.2 \times 10^{34}$ years Hyper K design report 2018
- DUNE

(LArTPC) $p \rightarrow \bar{\nu} K^+ : 1.3 \times 10^{34} \text{ years}$ Assuming 30% eff [DUNE TDR]

• JUNO

(Liquid Scintillator) $p \rightarrow \bar{\nu} K^+: 9.6 \times 10^{33} \text{ years}$ Earlier talk by C. Jiang

BNV operators at low scale

• (SUSY-)GUT provides the effective operator of lowest dimension 6.

Figure: Proton decay operator at different scales (a) $\sim \Lambda_{GUT}$ (b) $\sim \Lambda_{SUSY}$ (c) $\sim \Lambda_{EW}$ Model parameters come into Wilson coefficients

- $Y_{qq}, Y_{ql}, Y_{ud}, Y_{ue}$
- M_{H_C}
- $m_{\tilde{l}}$, $m_{\tilde{q}}$, triangle loop integrals, ...

whereas the model-independent content remains in the effective operator. Each model provides a different list of operators and lifetime estimates.

Hadronic matrix element of BNV op

Dim=6 effective operator

$$\langle \Pi \bar{\ell} | p \rangle_{GUT} \sim C^{\Gamma \Gamma'} \langle \Pi \bar{\ell} | p \rangle_{SM} = C^{\Gamma \Gamma'} \bar{v}_{\ell} \langle \Pi | \mathcal{O}_{qqq} | p \rangle$$
(1)

where $C^{\Gamma\Gamma'}$ is a wilson coefficient, Π is a pseudoscalar meson, p is a proton, and $(XY)_{\Gamma} = (XP_{\Gamma}Y)$. Our calculations include:

$$\mathcal{O}_I = \epsilon^{abc} (\bar{q}_1^{aC} P_{\chi^I} q_2^b) (\bar{\ell}^C P_{\chi'_I} q_3^c) \tag{2}$$

- $\langle \pi^0 | (\bar{u}^C d)_{\chi} u_L | p \rangle$
- $\langle \pi^+ | (\bar{u}^C d)_{\chi} d_L | p \rangle$
- $\langle K^0 | (\bar{u}^C s)_{\chi} u_L | p \rangle$
- $\langle K^+ | (\bar{u}^C s)_{\chi} d_L | p \rangle$
- $\langle K^+ | (\bar{u}^C d)_{\chi} s_L | p \rangle$
- $\langle K^+ | (\bar{d}^C s)_{\chi} u_L | p \rangle$

Decay rate

The decay rate $\Gamma(N \to \Pi + \overline{\ell})$ is calculated from the hadronic matrix element,

$$\Pi(p')\bar{\ell}(q)|O^{\Gamma\Gamma'}|N(p,s)\rangle$$
(3)

$$= \bar{v}_{\ell}(q) P_{\Gamma'} \left[W_0^{\Gamma\Gamma'}(q^2) - \frac{iq}{M_N} W_1^{\Gamma\Gamma'}(q^2) \right] u_N(p,s)$$
(4)

$$= \bar{v}_{\ell}(q) P_{\Gamma'} W_0^{\Gamma\Gamma'}(q^2) u_N(p,s) + O(m_{\ell}/M_N) \bar{v}_{\ell}(q) u_N(p,s)$$
(5)

, where Π is a PS meson, N a nucleon, and $W_{0,1}^{\Gamma\Gamma'}$ decay form factor [S.Aoki et al, PRD62:014506 (200)]. Then the decay rate is

$$\Gamma(N \to \Pi + \bar{\ell}) = \frac{(M_N - M_{\Pi})^2}{32\pi M_N^3} \left| \sum_I C_I W_0^I(N \to \Pi + \bar{\ell}) \right|$$
(6)

Lattice QCD in a nutshell

Vacuum expectation of an observable on lattice is given by

$$\langle \mathcal{O}
angle = \frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] \mathcal{O}[\bar{\psi}, \psi, U] e^{-S_E[U, \bar{\psi}, \psi]}$$

- 4D Spacetime Lattice with size $L^3 \times T$, lattice spacing a between the nearest point
- $\psi(x)$ fermion field on lattice site x
- $U_{\mu}(x)$ Gauge field on link between lattice site
- Statistical evaluation using Markov Chain Monte Carlo method

$$\overline{\mathcal{O}} = \sum_{i=1}^{n} \langle \mathcal{O} \rangle_F \left[U_{\mu}^{(i)} \right] = \langle \mathcal{O} \rangle + \delta \mathcal{O}$$
 (8)

• Interpolating operator is used to create hadrons (ex. $\chi_{\pi}(x) = \bar{\psi}(x)\gamma_5\psi(x)$)

(7)

Lattice QCD in a nutshell

Statistical Uncertainties

- Using Monte Carlo method introduces uncertainty $\sim 1/\sqrt{N}$
- Systematic Uncertainties
- Finite lattice spacing
- Unphysical quark mass
- Finite Volume
- Excited states contamination
- Renormalization

Lattice QCD in a nutshell

QCD Lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{f=1}^{N_f} \bar{\psi}_f(x) \left(i \not\!\!\!D - m_f \right) \psi_f(x) \quad , \quad \not\!\!\!D = \gamma^\mu \left[\partial_\mu - ig A_\mu(x) \right] \quad (9)$$

Vacuum expectation of an observable is given by

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] \mathcal{O}[\bar{\psi}, \psi, U] e^{iS[U, \bar{\psi}, \psi]}$$
(10)

In EW, $S[U, \bar{\psi}, \psi] \sim S_0[U, \bar{\psi}, \psi] + \alpha_e S_{int}[U, \bar{\psi}, \psi]$ In QCD, Non-perturbative due to strong coupling

Solution: Rotate to Euclidean 4D spacetime and discretize to solve numerically!

History of Proton decay matrix element calc

Ref.	JLQCD (2000)	CP-PACS & JLQCD (2004)	RBC (2007)	QCDSF (2008)	RBC/UKQCD (2008, 2014)	RBC/UKQCD (2017)	RBC/UKQCD (2022)
fermion	Wilson	Wilson	DW	Wilson	DW	DW	DW
N_{f}	0	0	0, 2	2	3	3	3
Volume (fm ³)	$(2.4)^2 \times 4.1$	$(3.3)^3$	$\begin{array}{c} {\sf Q} \left({1.6} ight)^3 \ {\sf 2} \left({1.9} ight)^3 \end{array}$	$(1.68)^3$	$(2.65)^3$	$(2.65)^3$	$(4.8)^3$ $(4.5)^3$
a (fm)	0.09	0	0.1 0.12	0.07	0.11	0.11	0.2 0.14
$M_\pi~({\rm GeV})$	0.45-0.73	0.6 - 1.2	0.39-0.58 0.48 - 0.67	0.42-1.8	0.34-0.69	0.34-0.69	0.14 (physical)
Renorm.	$\frac{\text{One-loop}}{1/a,\pi/a}$	One-loop 2GeV	NPR 2GeV	NPR 2GeV	NPR 2GeV	NPR 2GeV	NPR 2GeV
$\alpha ~({\rm GeV^3})$	-0.015(1)	-0.0090	-0.0100(19) -0.0118(21)	-0.0091(4)	-0.0119(26)	-0.0144(15)	-0.01257(111)
eta (GeV 3)	0.014(1)	0.0096	0.0108(21) 0.0118(21)	0.0091(4)	0.0128(28)	0.0144(15)	0.01269(107)

Table: Prior Studies on proton decay matrix elements

Lattice Setup

- Iwasaki gauge action +DSDR
- Domain wall fermion ($L_5 = 12$)
- AMA 32 sloppy sample

ensID	latt. size	$a^{-1}(GeV)$	aM_{π}	$M_{\pi}L$	# configs.	N_{sample}
24ID	$24^3 \times 64$	1.0230(20)	0.1378(7)	3.3	140	4480
32ID	$32^3 \times 64$	1.3787(48)	0.1008(5)	3.4	112	3584

Table: Ensembles used for RC to the charged pion β decay

Lattice Calculation We define the hadron interpolating operators,

$$J_N = \epsilon_{abc} (u^{a,T} C \gamma_5 d^b) u^c \tag{11}$$

$$J_{\pi^+} = \bar{d}^a \gamma_5 u^a \tag{12}$$

$$J_{K^+} = \bar{s}^a \gamma_5 u^a \tag{13}$$

Lattice Calculation

Three kinematic points for each ensemble

Π	\vec{n}_{Π}	$ec{n}_N$	$q^2({\rm GeV}^2)$ 24ID, 32ID
π	[1 1 1]	$[0 \ 0 \ 0]$	0.010, -0.012
	$[0\ 1\ 0]$	$[1\ 0\ 0]$	0.113, 0.095
	$\begin{bmatrix} 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	-0.116, -0.140
\mathcal{K}	$[0\ 1\ 1]$	$[0 \ 0 \ 0]$	-0.034, -0.042
	$[0\ 1\ 1]$	$[1\ 0\ 0]$	0.058, 0.056
	$[0\ 0\ 1]$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0.075, 0.074

Table: Table displaying values for π and \mathcal{K} with corresponding vectors and q^2 values.

Nonperturbative Renormalization

- $\mathcal{O}_{\Gamma\Gamma'}^{(ud)s} = \epsilon^{abc} (\bar{u}^{Ta} \Gamma d^b) \Gamma' s^c_{\delta}$
- Landau gauge
- RI-SMOM scheme
- Two-loop Matching (GRACEY, 2012)
- symmMOM scheme $p + q + r = 0, p^2 = q^2 = r^2 = \mu^2$ $Z_{IK}^{3q} Proj_J[\langle \bar{p}_1 \bar{q}_2 \bar{r}_3 \mathcal{O}_K^{3q} \rangle] = \delta_{IJ}$

ensID	$m_q^{(1)}$	$N_{cfg}^{(1)}$	$m_q^{(2)}$	$N_{cfg}^{(2)}$	$m_q^{(3)}$	$N_{cfg}^{(3)}$
24ID	0.00107	16	0.04	18	0.085	27
32ID	0.0001	22	0.045	21		<u>. </u>

Table: Mass choice for renormalization

	$Z_{++}^{(\mathrm{ud})\mathrm{s}}$	$Z_{}^{\mathrm{ud}s}$	$Z_{++}^{(\mathrm{ud})\mathrm{d}}$	$Z_{}^{(\mathrm{ud})\mathrm{d}}$	
24ID	0.6671(7)(60)(87)	0.6674(7)(51)(87)	0.6671(7)(60)(87)	0.6670(7)(49)(87)	
32ID	0.5895(11)(32)(77)	0.5896(9)(29)(77)	0.5893(11)(33)(77)	0.5897(9)(36)(77)	

Lattice Calculation

24ID matrix element

2-state fits with energies fixed from spectrum fits

UNCLASSIFIED

Momentum and Continuum extrapolation

Figure: (Left) W_0 and (Right) W_1 continuum extrapolation and interpolation to kinematic point

Momentum and Continuum extrapolation

Future extensions

Vector channel decay

- No previous calculation
- $n \to K^{*+}\ell^- \to K^+\pi^-\nu_\ell$.
- *K*^{*} state is sharp and below the threshold on some lattices.
- For Parity conserving case, the form factor decomposition should be:

 $\langle K^{*i}\ell|(ds)(d\ell)|p\rangle = \epsilon^{i}_{\mu}(p')\bar{u}_{\ell}(q)[F_{1}(q^{2})\gamma_{\mu} + F_{2}(q^{2})\sigma_{\mu\nu}q^{\nu} + F_{3}(q^{2})q_{\mu}]u_{p}(p)$ (14)

Example: on Clover E5 lattice

- Wilson Clover lattice ensemble
- lowest threshold for $\pi\pi$ P-wave state is 894.3(5.8) MeV.
- shows lighter vector meson mass due to discretization effect

ID	a(fm)	$m_{\pi}(\text{MeV})$	latt. size	$m_{\pi}L$	# configs.	
E5	0.07280(75)	271.8(2.9)	$48^3 \times 128$	4.18		
	aM_N	$aM_{ ho}$	aM_{K^*}	aM_{π}	aM_K	ap_{min}
	0.3736(51)	0.2858(39)	0.3388(17)	0.10037	0.21199	0.131

Table: example of ensemble with stable vector meson state

Summary

- Computing BNV hadronic matrix element was done at the physical point
- two-loop non-perturbative renormalization was done
- Future computation can contain more channels

