Heavy lon Physics in the EIC Era

July 29, 2024 - August 23, 2024

Searching the smallest fluid on the earth

Wenbin Zhao

Lawrence Berkeley National Laboratory University of California, Berkeley INT, July 29 – August 23, 2024

Collectivity in large and small systems

 Collective flow in p-p, p-Pb and Pb-Pb at the LHC.

ATLAS, Phys. Lett. B789, 444.

• Collective flow in p-Au, d-Au and He3-Au in RHIC.

PHENIX: Nature Physics, **15**, pages214–220 (2019); STAR: PhysRevLett.130.242301.

• Collective flow observed from large to small systems.

Standard model of Heavy-Ion Collisions

- Initial conditions (3D-Glauber, TRENTo, IP-Glasma, AMPT...)
- Viscous hydrodynamics (MUSIC, VISHew, CLVis, vHLLE, Trajectum...)
- Hadron cascade afterburner (UrQMD, SMASH, JAM...)

• One fluid rules them all.

Initial conditions: Oscar Garcia-Montero, Monday

Collective flow in small systems at low energies

PHENIX, PhysRevLett.120.062302. W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023).

• Collectivity is observed even in small systems at low collision energies.

"Collectivity" in UPC

 UPCs have a similar order of magnitude and trends of collectivity as other previously measured hadronic systems

Taken from Nicole Lewis's slide

Hydrodynamic simulation of UPC

Y. Shi, etc.al, Phys. Rev. D 103, 054017 (2021).

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905. C. Shen and B. Schenke Phys. Rev. C 97, 024907 (2018). W. Zhao, C. Shen and B. Schenke, PhysRevLett.129.252302. 6

Hydrodynamics Collectivity in UPCs

- 3D hydrodynamics describes the v_2 {2} and hierarchy in γ^* +Pb and p+Pb well.
- The longitudinal flow decorrelation is stronger in the γ^* +Pb than p+Pb, resulting in the v_2 hierarchy between γ^* +Pb and p+Pb. W. Zhao, C. Shen and B. Schenke PhysRevLett.129.252302.

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905. 7

Photon virtuality dependence of flow

The transverse positions of the valence partons are sampled from a 2D Gaussian $P(x, y) \propto exp[-\frac{x^2 + y^2}{2}Q^2]$

- Hydro: larger transverse space of the geometry allows more shape fluctuations and the v_2 are larger.
- CGC: Larger number of independent domains leads to lower v_2 .
- Hydro predicts the opposite trend with Q^2 than the CGC.

W. Zhao, C. Shen and B. Schenke, PhysRevLett.129.252302. Y. Shi, etc.al, Phys. Rev. D 103, 054017 (2021). B. D. Seidlitz. QM2019.

Mean p_T and radial flow in pA and γ A

W. Zhao, C. Shen and B. Schenke, PhysRevLett.129.252302.

Probing Baryon Junction in UPCs

Baryon Junction Structure picture

- For UPC events, the virtual photon decomposed into q and \overline{q} , with a baryon-free object.
- Baryon junction picture: baryon number is carried by the baryon junction, technically gluons, helping the transport of baryon number to mid-rapidity in the collision.
 D. Kharzeev, Phys.Lett. B 378, 238–246 (1996). J. D. Brandenburg, eta. al [arXiv:2205.05685 [hep-ph]].

dN/dy of net-proton in UPCs

- No net protons from the vector meson's fragmentation region.
- Larger λ_B generates larger dN/dy of net-proton at γ^* side.

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905. W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094] and in preparation.

Where is the smallest QGP droplet boundary?

"Collectivity" inside the high multiplicity jet in p-p

- "Collectivity" features inside high multiplicity jets in p-p.
- QGP droplet inside high multiplicity jet in p-p?

 $\mathbf{N}_{\mathsf{ch}}^{\mathsf{j}}$

Final state interactions inside the high multiplicity jet in p-p

ZPC: Ziwei Lin, Tuesday

CMS, [arXiv:2312.17103 [hep-ex]].

Initial parton shower \longrightarrow Partonic rescattering \longrightarrow Haronic rescattering Pythia8 \longrightarrow ZPC \longrightarrow UrQMD

Initial shower partons generated by the Pythia8 with CP5 tune, the formation time:

$$t_f = \sum_i 2E_i x_i (1 - x_i) / k_{\perp i}^2$$

Patonic elastic rescattering modeled by ZPC with the parton-parton scatter cross section σ_p .

Colored hadronization.

- Assign hadronization time 1 fm/c.
- Hadronic rescattering modeled by UrQMD.
- It returns to pythia8 by turning off FSI.
- Don't need to assume the system is thermalized.

W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Hadron distributions inside jets in p-p

- Pythia8 gives narrower multiplicity distributions. Next step: include inelastic rescattering.
- Higher multiplicity events have the larger initial emission angles.

CMS, [arXiv:2312.17103 [hep-ex]]. W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Collectivity inside high-multiplicity jets in p-p

- Final state interaction enhances the v_2 inside high multiplicity jet in p-p. QGP droplet?
- We predict that the Δv_2 between different η —gaps increases at $N_{ch}^J > 70$. CMS, [arXiv:2312.17103 [hep-ex]]. W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Collisions inside high-multiplicity jets in p-p

- Low multiplicity jet has large initial spatial anisotropy , but it don't have enough final state interactions to translate into momentum anisotropy
- The high multiplicity jets can have around 100 partonic collision times, which translate initial spatial anisotropy into momentum space.

W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

"Collectivity" in high multiplicity e^+e^-

- Pythia8 without long range correlations underestimates the v_2 at high multiplicity e^+e^- .
- Smallest QGP droplet?

Bonus of studying the collectivity

Imaging the nuclear shape

 $\sigma_{J/\psi}/\sigma_{D^0}$ $\sqrt{s_{\rm NN}}$ = 68.5 GeV **LHCb** - p Ne**∓**− PbNe 10^{-2} $\alpha' = 0.76 \pm 0.05$ G. Giacalone et al, arXiv:2405.20210 LHCb Collaboration, Eur.Phys.J.C 83 (2023) 7, 658 $N_{\rm coll}^{10^2}$ 10

- No QGP-like J/ψ suppression in Pb+Ne.
- Flow sensitive to shapes of Ne and O
- Searching the QGP at LHCb.

Study energy evolution of proton geometry

• Flow observables are sensitive to shapes of proton and its energy evolution.

Connect to the GPD of polarized proton

• Can flow observables probe the shape of the 0.2 polarized proton or light nuclei? Discussion with Jiangyong Jia, Prithwish. M. Burkardt, Int. J. Mod. Phys. A 18 (2003), 173-208.

P. Bozek and W. Broniowski, PhysRevLett.121.202301

0.4

0.2

0.4

-0.4

-0.2

Summary

- Hydrodynamics works well in describing collectivity from Pb+Pb, p+Pb to p+p and γ * +Pb collisions.
- Final state interactions are essential for producing the flow-like long-range correlation inside high multiplicity jet events in p-p.
- Similar flow-like long-range correlation observed in high multiplicity e^+e^- .
- Where is the QGP smallest boundary?

See contribution to Quark-Gluon Plasma 6 (World Scientific):

Progress and Challenges in Small Systems

Jorge Noronha, Björn Schenke, Chun Shen, Wenbin Zhao

e-Print: 2401.09208 [nucl-th]

Thanks for Your Attention! Questions ?

Back Up

More is different

v₂{2PC}

M. Greif, etc. al. PhysRevD.96.091504

G. Giacalone, B. Schenke and C. Shen, PhysRevLett.125.192301

• Final state interaction is important in developing collectivity in high multiplicity events.

Energy distributions in UPCs

• The energy of incoming quasi-real photon fluctuates event by event

$$\frac{dN^{\gamma}}{dk_{\gamma}} = \frac{2Z^{2}\alpha}{\pi k_{\gamma}} \left[w_{R}^{AA} K_{0}(w_{R}^{AA}) K_{1}(w_{R}^{AA}) - \frac{(w_{R}^{AA})^{2}}{2} (K_{1}^{2}(w_{R}^{AA}) - K_{0}^{2}(w_{R}^{AA})) \right]$$

$$w_R^{AA} = 2k_{\gamma}R_A/\gamma_L, \, \gamma_L = \sqrt{s_{\rm NN}}/(2m_N)$$

• The center of mass collision energy for the $\gamma^* + A$ system fluctuates

 $\sqrt{s_{\gamma N}} = (2k_{\gamma}\sqrt{s_{\rm NN}})^{1/2}$

 The center of mass rapidity of γ* + A collision fluctuates in the lab frame

 $\Delta y = y_{\text{beam}}(\sqrt{s_{\gamma N}}) - y_{\text{beam}}(\sqrt{s_{\text{NN}}})$

